Tempered stable Lévy motion and transient super-diffusion
The space-fractional diffusion equation models anomalous super-diffusion. Its solutions are transition densities of a stable Lévy motion, representing the accumulation of power-law jumps. The tempered stable Lévy motion uses exponential tempering to cool these jumps. A tempered fractional diffusion...
Uloženo v:
| Vydáno v: | Journal of computational and applied mathematics Ročník 233; číslo 10; s. 2438 - 2448 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Kidlington
Elsevier B.V
15.03.2010
Elsevier |
| Témata: | |
| ISSN: | 0377-0427, 1879-1778 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The space-fractional diffusion equation models anomalous super-diffusion. Its solutions are transition densities of a stable Lévy motion, representing the accumulation of power-law jumps. The tempered stable Lévy motion uses exponential tempering to cool these jumps. A tempered fractional diffusion equation governs the transition densities, which progress from super-diffusive early-time to diffusive late-time behavior. This article provides finite difference and particle tracking methods for solving the tempered fractional diffusion equation with drift. A temporal and spatial second-order Crank–Nicolson method is developed, based on a finite difference formula for tempered fractional derivatives. A new exponential rejection method for simulating tempered Lévy stables is presented to facilitate particle tracking codes. |
|---|---|
| ISSN: | 0377-0427 1879-1778 |
| DOI: | 10.1016/j.cam.2009.10.027 |