Tempered stable Lévy motion and transient super-diffusion

The space-fractional diffusion equation models anomalous super-diffusion. Its solutions are transition densities of a stable Lévy motion, representing the accumulation of power-law jumps. The tempered stable Lévy motion uses exponential tempering to cool these jumps. A tempered fractional diffusion...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of computational and applied mathematics Ročník 233; číslo 10; s. 2438 - 2448
Hlavní autoři: Baeumer, Boris, Meerschaert, Mark M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Kidlington Elsevier B.V 15.03.2010
Elsevier
Témata:
ISSN:0377-0427, 1879-1778
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The space-fractional diffusion equation models anomalous super-diffusion. Its solutions are transition densities of a stable Lévy motion, representing the accumulation of power-law jumps. The tempered stable Lévy motion uses exponential tempering to cool these jumps. A tempered fractional diffusion equation governs the transition densities, which progress from super-diffusive early-time to diffusive late-time behavior. This article provides finite difference and particle tracking methods for solving the tempered fractional diffusion equation with drift. A temporal and spatial second-order Crank–Nicolson method is developed, based on a finite difference formula for tempered fractional derivatives. A new exponential rejection method for simulating tempered Lévy stables is presented to facilitate particle tracking codes.
ISSN:0377-0427
1879-1778
DOI:10.1016/j.cam.2009.10.027