Existence, uniqueness and stability of the solutions to neutral stochastic functional differential equations with infinite delay

In this paper, we obtain the existence and uniqueness of solutions to neutral stochastic functional differential equations with infinite delay at phase space BC ( ( - ∞ , 0 ] ; R d ) which denotes the family of bounded continuous R d - value functions φ defined on ( - ∞ , 0 ] with norm ‖ φ ‖ = sup -...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 210; číslo 1; s. 72 - 79
Hlavní autoři: Ren, Yong, Xia, Ningmao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 01.04.2009
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we obtain the existence and uniqueness of solutions to neutral stochastic functional differential equations with infinite delay at phase space BC ( ( - ∞ , 0 ] ; R d ) which denotes the family of bounded continuous R d - value functions φ defined on ( - ∞ , 0 ] with norm ‖ φ ‖ = sup - ∞ < θ ⩽ 0 | φ ( θ ) | under non-Lipschitz condition with Lipschitz condition being considered as a special case and a weakened linear growth condition. The solution is constructed by the successive approximation. Furthermore, we give the continuous dependence of solutions on the initial value by means of the Corollary of Bihari inequality.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2008.11.009