P-(skew)symmetric common solutions to a pair of quaternion matrix equations

An n × n quaternion matrix A is termed P-symmetric (or P-skewsymmetric) if A = PAP (or A = − PAP), where P is an n × n nontrivial quaternion involution. In this paper, we first establish necessary and sufficient conditions for the existence and the expression of the general solution to the system of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 195; číslo 2; s. 721 - 732
Hlavní autoři: Wang, Qing-Wen, Chang, Hai-Xia, Lin, Chun-Yan
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 01.02.2008
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:An n × n quaternion matrix A is termed P-symmetric (or P-skewsymmetric) if A = PAP (or A = − PAP), where P is an n × n nontrivial quaternion involution. In this paper, we first establish necessary and sufficient conditions for the existence and the expression of the general solution to the system of quaternion matrix equations A 1 X 1 = C 1 , A 2 X 2 = C 2 , A 3 X 1 B 1 + A 4 X 2 B 2 = C b , then use the results on the system mentioned above to give necessary and sufficient conditions for the existence and the representations of P-symmetric and P-skewsymmetric solutions to the system of quaternion matrix equations A a X = C a and A b XB b = C b . Furthermore, we establish representations of P-symmetric and P-skewsymmetric quaternion matrices. A numerical example is presented to illustrate the results of this paper.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2007.05.021