Automorphism groups of generalized triangular matrix rings

We call a ring strongly indecomposable if it cannot be represented as a non-trivial (i.e. M ≠ 0 ) generalized triangular matrix ring R M 0 S , for some rings R and S and some R - S -bimodule R M S . Examples of such rings include rings with only the trivial idempotents 0 and 1, as well as endomorphi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear algebra and its applications Ročník 434; číslo 4; s. 1018 - 1026
Hlavní autoři: Ánh, P.N., van Wyk, L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier Inc 15.02.2011
Elsevier
Témata:
ISSN:0024-3795
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We call a ring strongly indecomposable if it cannot be represented as a non-trivial (i.e. M ≠ 0 ) generalized triangular matrix ring R M 0 S , for some rings R and S and some R - S -bimodule R M S . Examples of such rings include rings with only the trivial idempotents 0 and 1, as well as endomorphism rings of vector spaces, or more generally, semiprime indecomposable rings. We show that if R and S are strongly indecomposable rings, then the triangulation of the non-trivial generalized triangular matrix ring R M 0 S is unique up to isomorphism; to be more precise, if φ : R M 0 S → R ′ M ′ 0 S ′ is an isomorphism, then there are isomorphisms ρ : R → R ′ and ψ : S → S ′ such that χ : = φ ∣ M : M → M ′ is an R - S -bimodule isomorphism relative to ρ and ψ . In particular, this result describes the automorphism groups of such upper triangular matrix rings R M 0 S .
ISSN:0024-3795
DOI:10.1016/j.laa.2010.10.007