Automorphism groups of generalized triangular matrix rings
We call a ring strongly indecomposable if it cannot be represented as a non-trivial (i.e. M ≠ 0 ) generalized triangular matrix ring R M 0 S , for some rings R and S and some R - S -bimodule R M S . Examples of such rings include rings with only the trivial idempotents 0 and 1, as well as endomorphi...
Uloženo v:
| Vydáno v: | Linear algebra and its applications Ročník 434; číslo 4; s. 1018 - 1026 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier Inc
15.02.2011
Elsevier |
| Témata: | |
| ISSN: | 0024-3795 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We call a ring strongly indecomposable if it cannot be represented as a non-trivial (i.e.
M
≠
0
) generalized triangular matrix ring
R
M
0
S
, for some rings
R
and
S
and some
R
-
S
-bimodule
R
M
S
. Examples of such rings include rings with only the trivial idempotents 0 and 1, as well as endomorphism rings of vector spaces, or more generally, semiprime indecomposable rings. We show that if
R
and
S
are strongly indecomposable rings, then the triangulation of the non-trivial generalized triangular matrix ring
R
M
0
S
is unique up to isomorphism; to be more precise, if
φ
:
R
M
0
S
→
R
′
M
′
0
S
′
is an isomorphism, then there are isomorphisms
ρ
:
R
→
R
′
and
ψ
:
S
→
S
′
such that
χ
:
=
φ
∣
M
:
M
→
M
′
is an
R
-
S
-bimodule isomorphism relative to
ρ
and
ψ
. In particular, this result describes the automorphism groups of such upper triangular matrix rings
R
M
0
S
. |
|---|---|
| ISSN: | 0024-3795 |
| DOI: | 10.1016/j.laa.2010.10.007 |