Linear dependence of quotients of analytic functions of several variables with the least subcollection of generalized Wronskians
We study linear dependence in the case of quotients of analytic functions in several variables (real or complex). We identify the least subcollection of generalized Wronskians whose identical vanishing is sufficient for linear dependence. Our proof admits a straight-forward algebraic generalization...
Uloženo v:
| Vydáno v: | Linear algebra and its applications Ročník 408; s. 151 - 160 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
Elsevier Inc
01.10.2005
Elsevier Science |
| Témata: | |
| ISSN: | 0024-3795, 1873-1856 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study linear dependence in the case of quotients of analytic functions in several variables (real or complex). We identify the least subcollection of generalized Wronskians whose identical vanishing is sufficient for linear dependence. Our proof admits a straight-forward algebraic generalization and also constitutes an alternative proof of the previously known result that the identical vanishing of the whole collection of generalized Wronskians implies linear dependence. Motivated by the structure of this proof, we introduce a method for calculating the space of linear relations. We conclude with some reflections about this method that may be promising from a computational point of view. |
|---|---|
| ISSN: | 0024-3795 1873-1856 |
| DOI: | 10.1016/j.laa.2005.06.002 |