Computational methods for solving fully fuzzy linear systems

Since many real-world engineering systems are too complex to be defined in precise terms, imprecision is often involved in any engineering design process. Fuzzy systems have an essential role in this fuzzy modelling, which can formulate uncertainty in actual environment. In addition, this is an impo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied mathematics and computation Ročník 179; číslo 1; s. 328 - 343
Hlavní autoři: Dehghan, Mehdi, Hashemi, Behnam, Ghatee, Mehdi
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 01.08.2006
Elsevier
Témata:
ISSN:0096-3003, 1873-5649
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Since many real-world engineering systems are too complex to be defined in precise terms, imprecision is often involved in any engineering design process. Fuzzy systems have an essential role in this fuzzy modelling, which can formulate uncertainty in actual environment. In addition, this is an important sub-process in determining inverse, eigenvalue and some other useful matrix computations, too. One of the most practicable subjects in recent studies is based on LR fuzzy numbers, which are defined and used by Dubois and Prade with some useful and easy approximation arithmetic operators on them. Recently Dehghan et al. [M. Dehghan, M. Ghatee, B. Hashemi, Some computations on fuzzy matrices, submitted for publication.] extended some matrix computations on fuzzy matrices, where a fuzzy matrix appears as a rectangular array of fuzzy numbers. In continuation to our previous work, we focus on fuzzy systems in this paper. It is proved that finding all of the real solutions which satisfy in a system with interval coefficients is NP-hard. The same result can similarly be derived for fuzzy systems. So we employ some heuristics based methods on Dubois and Prade’s approach, finding some positive fuzzy vector x ˜ which satisfies A ˜ x ˜ = b ˜ , where A ˜ and b ˜ are a fuzzy matrix and a fuzzy vector respectively. We propose some new methods to solve this system that are comparable to the well known methods such as the Cramer’s rule, Gaussian elimination, LU decomposition method (Doolittle algorithm) and its simplification. Finally we extend a new method employing Linear Programming (LP) for solving square and non-square (over-determined) fuzzy systems. Some numerical examples clarify the ability of our heuristics.
AbstractList Since many real-world engineering systems are too complex to be defined in precise terms, imprecision is often involved in any engineering design process. Fuzzy systems have an essential role in this fuzzy modelling, which can formulate uncertainty in actual environment. In addition, this is an important sub-process in determining inverse, eigenvalue and some other useful matrix computations, too. One of the most practicable subjects in recent studies is based on LR fuzzy numbers, which are defined and used by Dubois and Prade with some useful and easy approximation arithmetic operators on them. Recently Dehghan et al. [M. Dehghan, M. Ghatee, B. Hashemi, Some computations on fuzzy matrices, submitted for publication.] extended some matrix computations on fuzzy matrices, where a fuzzy matrix appears as a rectangular array of fuzzy numbers. In continuation to our previous work, we focus on fuzzy systems in this paper. It is proved that finding all of the real solutions which satisfy in a system with interval coefficients is NP-hard. The same result can similarly be derived for fuzzy systems. So we employ some heuristics based methods on Dubois and Prade’s approach, finding some positive fuzzy vector x ˜ which satisfies A ˜ x ˜ = b ˜ , where A ˜ and b ˜ are a fuzzy matrix and a fuzzy vector respectively. We propose some new methods to solve this system that are comparable to the well known methods such as the Cramer’s rule, Gaussian elimination, LU decomposition method (Doolittle algorithm) and its simplification. Finally we extend a new method employing Linear Programming (LP) for solving square and non-square (over-determined) fuzzy systems. Some numerical examples clarify the ability of our heuristics.
Author Ghatee, Mehdi
Dehghan, Mehdi
Hashemi, Behnam
Author_xml – sequence: 1
  givenname: Mehdi
  surname: Dehghan
  fullname: Dehghan, Mehdi
  email: mdehghan@aut.ac.ir
– sequence: 2
  givenname: Behnam
  surname: Hashemi
  fullname: Hashemi, Behnam
  email: hashemi_am@aut.ac.ir, hoseyn.hashemi@gawab.com
– sequence: 3
  givenname: Mehdi
  surname: Ghatee
  fullname: Ghatee, Mehdi
  email: ghatee@aut.ac.ir, ghatee@gmail.com
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18084430$$DView record in Pascal Francis
BookMark eNp9kE1Lw0AQhhdRsK3-AG-5eEycySbZBr1I8QsKXvS8bDazuiXJlt20kP56UyIIHgrDzGHeZ2CeOTvvXEeM3SAkCFjcbRLV6iQFyBPEBNPsjM1wKXicF1l5zmYAZRFzAH7J5iFsAEAUmM3Yw8q1212veus61UQt9d-uDpFxPgqu2dvuKzK7phnGfjgMUWM7UuNqCD214YpdGNUEuv6dC_b5_PSxeo3X7y9vq8d1rHkq-hgFlURlaYo6rUymsYa8pryoUkChqiXXJkeolFFVWlSiNkoIU6VjcSTUxBfsdrq7VUGrxnjVaRvk1ttW-UHiEpZZxmHM4ZTT3oXgyfxFQB41yY0cNcmjJokoR00jI_4x2k46eq9sc5K8n0gaX99b8jJoS52m2nrSvaydPUH_AItyhbE
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1007_s00500_018_3290_y
crossref_primary_10_33889_IJMEMS_2019_4_5_099
crossref_primary_10_1155_2013_593274
crossref_primary_10_1515_auom_2015_0034
crossref_primary_10_1057_jors_2012_12
crossref_primary_10_1155_2014_486576
crossref_primary_10_1109_TFUZZ_2014_2362550
crossref_primary_10_1007_s10489_012_0368_6
crossref_primary_10_1016_j_cam_2010_05_009
crossref_primary_10_1155_2021_6631762
crossref_primary_10_1088_1742_6596_1362_1_012087
crossref_primary_10_1108_17563781311301508
crossref_primary_10_1007_s00500_013_1037_3
crossref_primary_10_1016_j_apm_2013_02_039
crossref_primary_10_4018_ijfsa_2012070101
crossref_primary_10_1186_s40467_014_0016_2
crossref_primary_10_1007_s10598_012_9123_4
crossref_primary_10_1108_EC_05_2024_0439
crossref_primary_10_1016_j_apm_2010_07_037
crossref_primary_10_3233_JIFS_17774
crossref_primary_10_1007_s10489_011_0318_8
crossref_primary_10_1155_2023_4469908
crossref_primary_10_1080_03081087_2013_839667
crossref_primary_10_1016_j_apm_2015_03_042
crossref_primary_10_1155_2011_943161
crossref_primary_10_1155_2016_1538496
crossref_primary_10_1080_21681015_2019_1585391
crossref_primary_10_1016_j_apm_2014_02_024
crossref_primary_10_1016_j_amc_2006_05_043
crossref_primary_10_1007_s40314_020_01287_4
crossref_primary_10_1007_s12046_011_0059_8
crossref_primary_10_1007_s00500_013_0986_x
crossref_primary_10_1007_s10598_015_9295_9
crossref_primary_10_1088_1402_4896_ade42d
crossref_primary_10_1016_j_apm_2012_01_002
crossref_primary_10_1016_S1874_8651_10_60017_8
crossref_primary_10_1007_s10598_015_9283_0
crossref_primary_10_1016_j_asoc_2014_10_003
crossref_primary_10_1007_s00500_012_0858_9
crossref_primary_10_1016_j_matpr_2020_12_1062
crossref_primary_10_1016_j_asoc_2014_03_017
crossref_primary_10_33889_IJMEMS_2025_10_5_064
crossref_primary_10_1088_1742_6596_1116_2_022011
crossref_primary_10_1155_2013_752760
crossref_primary_10_1007_s00500_014_1243_7
crossref_primary_10_1016_j_ins_2013_04_004
crossref_primary_10_1080_03052150902866569
crossref_primary_10_1155_2014_782376
crossref_primary_10_1007_s10957_012_0215_2
crossref_primary_10_1016_j_asoc_2012_01_005
crossref_primary_10_3233_IFS_152039
crossref_primary_10_1007_s12046_014_0295_9
crossref_primary_10_1007_s10489_016_0779_x
crossref_primary_10_1007_s12046_014_0313_y
crossref_primary_10_1007_s00500_020_05228_5
crossref_primary_10_3233_JIFS_16227
crossref_primary_10_1155_2018_2104343
crossref_primary_10_1007_s00500_016_2197_8
crossref_primary_10_1007_s12543_012_0101_5
crossref_primary_10_1016_j_fiae_2014_12_005
crossref_primary_10_1007_s10598_012_9144_z
crossref_primary_10_1080_16168658_2022_2152906
crossref_primary_10_1007_s12046_013_0207_4
crossref_primary_10_1016_j_jocs_2017_12_004
crossref_primary_10_1080_00207160701294400
crossref_primary_10_1007_s00500_012_0941_2
crossref_primary_10_15807_jorsj_61_172
crossref_primary_10_3233_IFS_151813
Cites_doi 10.1016/S0165-0114(97)00140-1
10.1016/j.amc.2005.07.033
10.1080/00207727808941724
10.1016/0020-0255(91)90031-O
10.1016/0165-0114(80)90004-4
10.1016/S0165-0114(00)00096-8
10.1016/S0165-0114(96)00270-9
10.1002/(SICI)1097-0207(19980715)42:5<829::AID-NME386>3.0.CO;2-G
10.1137/0704001
10.1016/S0019-9958(65)90241-X
10.1016/0165-0114(91)90019-M
10.1016/S0165-0114(96)00118-2
ContentType Journal Article
Copyright 2005 Elsevier Inc.
2006 INIST-CNRS
Copyright_xml – notice: 2005 Elsevier Inc.
– notice: 2006 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.amc.2005.11.124
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 343
ExternalDocumentID 18084430
10_1016_j_amc_2005_11_124
S0096300305010404
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c327t-17e9ee99f6d2bf4c1d05de56b2017ab83cf510bafab26b7dfa77fb2fb231e1ce3
ISICitedReferencesCount 126
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000240814500030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0096-3003
IngestDate Mon Jul 21 09:16:51 EDT 2025
Sat Nov 29 02:46:12 EST 2025
Tue Nov 18 19:51:01 EST 2025
Fri Feb 23 02:29:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Linear programming (LP)
Doolittle algorithm
Fuzzy approximate arithmetic
Gaussian elimination
Fully fuzzy linear system (FFLS)
Cramer’s rule
Fuzzy LU decomposition
Over-determined fuzzy linear system of equations
LR fuzzy number
Uncertainty
Complex system
Eigenvalue
Overdetermined system
Direct method
Linear equation
Fuzzy system
Numerical linear algebra
Linear programming
Cramer's rule
Rectangular matrix
Engineering design
Numerical analysis
Linear system
Matrix inversion
Applied mathematics
Heuristic method
Matrix calculus
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-17e9ee99f6d2bf4c1d05de56b2017ab83cf510bafab26b7dfa77fb2fb231e1ce3
PageCount 16
ParticipantIDs pascalfrancis_primary_18084430
crossref_primary_10_1016_j_amc_2005_11_124
crossref_citationtrail_10_1016_j_amc_2005_11_124
elsevier_sciencedirect_doi_10_1016_j_amc_2005_11_124
PublicationCentury 2000
PublicationDate 2006-08-01
PublicationDateYYYYMMDD 2006-08-01
PublicationDate_xml – month: 08
  year: 2006
  text: 2006-08-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematics and computation
PublicationYear 2006
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Giachetti, Young (bib11) 1997; 91
Ye (bib21) 1997
Zadeh (bib22) 1965; 8
Friedman, Ming, Kandel (bib9) 1998; 96
Dubois, Prade (bib7) 1980; 3
Dubois, Prade (bib6) 1978
Hansen (bib14) 1967; 4
Buckley, Qu (bib2) 1991; 43
M. Dehghan, B. Hashemi, Iterative solution of fuzzy linear systems, Applied Mathematics and Computation, in press
A.A. Gvozdik, Solution of fuzzy equations, UDC, 518.9 (1985) 60–67.
Zhao, Govind (bib23) 1991; 56
Fuzzy Sets and Systems, in press.
DeMarr (bib5) 1972
Wagenknecht, Hampel, Schneider (bib19) 2001; 123
M. Dehghan, B. Hashemi, M. Ghatee, Solution of the fully fuzzy linear systems using iterative techniques, submitted for publication.
Watkins (bib20) 2002
Hansen (bib13) 1965; 2
S. Muzzioli, H. Reynaerts, Fuzzy linear systems of the form
+
.
M. Dehghan, M. Ghatee, B. Hashemi, Inverse of a fuzzy matrix of fuzzy numbers, submitted for publication.
M. Dehghan, M. Ghatee, B. Hashemi, Some computations on fuzzy matrices, submitted for publication.
M.F. Kawaguchi, T. Da-Te, A calculation method for solving fuzzy arithmetic equations with triangular norms, in: 2nd IEEE International Conference on Fuzzy Systems, San Francisco, CA, USA, 1993, March 28–April 1.
Rao, Chen (bib17) 1998; 42
Bazarra, Jarvis, Sherali (bib1) 1990
Dubois, Prade (bib8) 1980
Kreinovich, Lakeyev, Rohn, Kahl (bib16) 1998; vol. 10
Giachetti, Young (bib10) 1997; 91
=
Sakawa (bib18) 1973
Zadeh (10.1016/j.amc.2005.11.124_bib22) 1965; 8
Dubois (10.1016/j.amc.2005.11.124_bib8) 1980
Watkins (10.1016/j.amc.2005.11.124_bib20) 2002
10.1016/j.amc.2005.11.124_bib15
Sakawa (10.1016/j.amc.2005.11.124_bib18) 1973
10.1016/j.amc.2005.11.124_bib12
Kreinovich (10.1016/j.amc.2005.11.124_bib16) 1998; vol. 10
Giachetti (10.1016/j.amc.2005.11.124_bib11) 1997; 91
Hansen (10.1016/j.amc.2005.11.124_bib13) 1965; 2
Ye (10.1016/j.amc.2005.11.124_bib21) 1997
DeMarr (10.1016/j.amc.2005.11.124_bib5) 1972
Dubois (10.1016/j.amc.2005.11.124_bib7) 1980; 3
Buckley (10.1016/j.amc.2005.11.124_bib2) 1991; 43
Rao (10.1016/j.amc.2005.11.124_bib17) 1998; 42
Zhao (10.1016/j.amc.2005.11.124_bib23) 1991; 56
10.1016/j.amc.2005.11.124_bib25
10.1016/j.amc.2005.11.124_bib26
10.1016/j.amc.2005.11.124_bib24
Bazarra (10.1016/j.amc.2005.11.124_bib1) 1990
Giachetti (10.1016/j.amc.2005.11.124_bib10) 1997; 91
Wagenknecht (10.1016/j.amc.2005.11.124_bib19) 2001; 123
10.1016/j.amc.2005.11.124_bib3
10.1016/j.amc.2005.11.124_bib4
Dubois (10.1016/j.amc.2005.11.124_bib6) 1978
Hansen (10.1016/j.amc.2005.11.124_bib14) 1967; 4
Friedman (10.1016/j.amc.2005.11.124_bib9) 1998; 96
References_xml – volume: 3
  start-page: 37
  year: 1980
  end-page: 48
  ident: bib7
  article-title: Systems of linear fuzzy constraints
  publication-title: Fuzzy Sets and Systems
– volume: vol. 10
  year: 1998
  ident: bib16
  publication-title: Computational Complexity and Feasibility of Data Processing and Interval Computations
– volume: 123
  start-page: 49
  year: 2001
  end-page: 62
  ident: bib19
  article-title: Computational aspects of fuzzy arithmetics based on Archimedean t-norms
  publication-title: Fuzzy Sets and Systems
– reference: M. Dehghan, B. Hashemi, Iterative solution of fuzzy linear systems, Applied Mathematics and Computation, in press,
– reference: , Fuzzy Sets and Systems, in press.
– year: 2002
  ident: bib20
  article-title: Fundamentals of Matrix Computations
– year: 1990
  ident: bib1
  article-title: Linear Programming and Network Flows
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: bib22
  article-title: Fuzzy sets
  publication-title: Information and Control
– reference: A.A. Gvozdik, Solution of fuzzy equations, UDC, 518.9 (1985) 60–67.
– volume: 96
  start-page: 201
  year: 1998
  end-page: 209
  ident: bib9
  article-title: Fuzzy linear systems
  publication-title: Fuzzy Sets and Systems
– volume: 43
  start-page: 33
  year: 1991
  end-page: 43
  ident: bib2
  article-title: Solving systems of linear fuzzy equations
  publication-title: Fuzzy Sets and Systems
– reference: M. Dehghan, M. Ghatee, B. Hashemi, Some computations on fuzzy matrices, submitted for publication.
– volume: 4
  start-page: 1
  year: 1967
  end-page: 9
  ident: bib14
  article-title: Interval arithmetic in matrix computations, Part II
  publication-title: SIAM Journal on Numerical Analysis
– volume: 2
  start-page: 308
  year: 1965
  end-page: 320
  ident: bib13
  article-title: Interval arithmetic in matrix computations, Part I
  publication-title: SIAM Journal on Numerical Analysis
– reference: +
– reference: M. Dehghan, M. Ghatee, B. Hashemi, Inverse of a fuzzy matrix of fuzzy numbers, submitted for publication.
– reference: M.F. Kawaguchi, T. Da-Te, A calculation method for solving fuzzy arithmetic equations with triangular norms, in: 2nd IEEE International Conference on Fuzzy Systems, San Francisco, CA, USA, 1993, March 28–April 1.
– year: 1997
  ident: bib21
  article-title: Interior Point Algorithms, Theory and Analysis
– start-page: 307
  year: 1972
  end-page: 308
  ident: bib5
  article-title: Nonnegative matrices with nonnegative inverses
  publication-title: Proceedings of the American Mathematical Society
– volume: 56
  start-page: 199
  year: 1991
  end-page: 243
  ident: bib23
  article-title: Solutions of algebraic equations involving generalized fuzzy numbers
  publication-title: Information Science
– start-page: 613
  year: 1978
  end-page: 626
  ident: bib6
  article-title: Operations on fuzzy numbers
  publication-title: International Journal of Systems Science
– volume: 91
  start-page: 185
  year: 1997
  end-page: 202
  ident: bib11
  article-title: A parametric representation of fuzzy numbers and their arithmetic operators
  publication-title: Fuzzy Sets and Systems
– volume: 91
  start-page: 1
  year: 1997
  end-page: 13
  ident: bib10
  article-title: Analysis of the error in the standard approximation used for multiplication of triangular and trapezoidal fuzzy numbers and the development of a new approximation
  publication-title: Fuzzy Sets and Systems
– year: 1973
  ident: bib18
  article-title: Fuzzy Sets and Interactive Multiobjective Optimization
– reference: M. Dehghan, B. Hashemi, M. Ghatee, Solution of the fully fuzzy linear systems using iterative techniques, submitted for publication.
– reference: S. Muzzioli, H. Reynaerts, Fuzzy linear systems of the form
– year: 1980
  ident: bib8
  article-title: Fuzzy Sets and Systems: Theory and Applications
– reference: =
– volume: 42
  start-page: 829
  year: 1998
  end-page: 846
  ident: bib17
  article-title: Numerical solution of fuzzy linear equations in engineering analysis
  publication-title: International Journal for Numerical Methods in Engineering
– reference: .
– volume: 91
  start-page: 185
  year: 1997
  ident: 10.1016/j.amc.2005.11.124_bib11
  article-title: A parametric representation of fuzzy numbers and their arithmetic operators
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(97)00140-1
– ident: 10.1016/j.amc.2005.11.124_bib12
– ident: 10.1016/j.amc.2005.11.124_bib4
  doi: 10.1016/j.amc.2005.07.033
– year: 1973
  ident: 10.1016/j.amc.2005.11.124_bib18
– start-page: 613
  year: 1978
  ident: 10.1016/j.amc.2005.11.124_bib6
  article-title: Operations on fuzzy numbers
  publication-title: International Journal of Systems Science
  doi: 10.1080/00207727808941724
– year: 1980
  ident: 10.1016/j.amc.2005.11.124_bib8
– volume: 56
  start-page: 199
  year: 1991
  ident: 10.1016/j.amc.2005.11.124_bib23
  article-title: Solutions of algebraic equations involving generalized fuzzy numbers
  publication-title: Information Science
  doi: 10.1016/0020-0255(91)90031-O
– volume: 3
  start-page: 37
  year: 1980
  ident: 10.1016/j.amc.2005.11.124_bib7
  article-title: Systems of linear fuzzy constraints
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(80)90004-4
– volume: 123
  start-page: 49
  year: 2001
  ident: 10.1016/j.amc.2005.11.124_bib19
  article-title: Computational aspects of fuzzy arithmetics based on Archimedean t-norms
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(00)00096-8
– volume: vol. 10
  year: 1998
  ident: 10.1016/j.amc.2005.11.124_bib16
– ident: 10.1016/j.amc.2005.11.124_bib3
– ident: 10.1016/j.amc.2005.11.124_bib25
– volume: 96
  start-page: 201
  year: 1998
  ident: 10.1016/j.amc.2005.11.124_bib9
  article-title: Fuzzy linear systems
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(96)00270-9
– volume: 42
  start-page: 829
  year: 1998
  ident: 10.1016/j.amc.2005.11.124_bib17
  article-title: Numerical solution of fuzzy linear equations in engineering analysis
  publication-title: International Journal for Numerical Methods in Engineering
  doi: 10.1002/(SICI)1097-0207(19980715)42:5<829::AID-NME386>3.0.CO;2-G
– year: 1997
  ident: 10.1016/j.amc.2005.11.124_bib21
– ident: 10.1016/j.amc.2005.11.124_bib15
– year: 2002
  ident: 10.1016/j.amc.2005.11.124_bib20
– volume: 4
  start-page: 1
  year: 1967
  ident: 10.1016/j.amc.2005.11.124_bib14
  article-title: Interval arithmetic in matrix computations, Part II
  publication-title: SIAM Journal on Numerical Analysis
  doi: 10.1137/0704001
– volume: 8
  start-page: 338
  year: 1965
  ident: 10.1016/j.amc.2005.11.124_bib22
  article-title: Fuzzy sets
  publication-title: Information and Control
  doi: 10.1016/S0019-9958(65)90241-X
– ident: 10.1016/j.amc.2005.11.124_bib24
– year: 1990
  ident: 10.1016/j.amc.2005.11.124_bib1
– volume: 43
  start-page: 33
  year: 1991
  ident: 10.1016/j.amc.2005.11.124_bib2
  article-title: Solving systems of linear fuzzy equations
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/0165-0114(91)90019-M
– ident: 10.1016/j.amc.2005.11.124_bib26
– start-page: 307
  year: 1972
  ident: 10.1016/j.amc.2005.11.124_bib5
  article-title: Nonnegative matrices with nonnegative inverses
  publication-title: Proceedings of the American Mathematical Society
– volume: 2
  start-page: 308
  year: 1965
  ident: 10.1016/j.amc.2005.11.124_bib13
  article-title: Interval arithmetic in matrix computations, Part I
  publication-title: SIAM Journal on Numerical Analysis
– volume: 91
  start-page: 1
  year: 1997
  ident: 10.1016/j.amc.2005.11.124_bib10
  article-title: Analysis of the error in the standard approximation used for multiplication of triangular and trapezoidal fuzzy numbers and the development of a new approximation
  publication-title: Fuzzy Sets and Systems
  doi: 10.1016/S0165-0114(96)00118-2
SSID ssj0007614
Score 2.263021
Snippet Since many real-world engineering systems are too complex to be defined in precise terms, imprecision is often involved in any engineering design process....
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 328
SubjectTerms Algebra
Cramer’s rule
Doolittle algorithm
Exact sciences and technology
Fully fuzzy linear system (FFLS)
Fuzzy approximate arithmetic
Fuzzy LU decomposition
Gaussian elimination
Linear and multilinear algebra, matrix theory
Linear programming (LP)
LR fuzzy number
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Numerical methods in mathematical programming
Numerical methods in mathematical programming, optimization and calculus of variations
Over-determined fuzzy linear system of equations
Sciences and techniques of general use
Title Computational methods for solving fully fuzzy linear systems
URI https://dx.doi.org/10.1016/j.amc.2005.11.124
Volume 179
WOSCitedRecordID wos000240814500030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5649
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007614
  issn: 0096-3003
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS-wwEA9-vIMi4vsQv8nBk7KybdOmAS8iioqKB33srSRp8qq4dbGrqH-9kybpbn0oehBKKKVJ2s4vk1-mkxmENqVUmnPGO0moYYGijR7MCQw8TQLOCc1VnRvw7yk9P097PXbh3MaqOp0ALcv06YkNvlXUcA2EbbbOfkHcTaNwAc5B6FCC2KH8lOBtngZv47MZouugC9vQb20-MCb3ZyhfXp63DcvkPqBzNU5VPT_tN4FdK78JzrffsGBV_CusJfVMFfn1SK1VJh5BjSFVlLzfePsUQHFV-_4x00PqTQ9OnTLjONeNWurUJodp4cYqx8htA7fzbGTDM_2nwq014WaH96U1eQXBTmD3WbfDZb-ZxhrnQu-3dpNBEybNZgzLnAyamETTIY0Z6L7pveOD3kkzY9PExoD3r-P_ftd-gG-e4z3-MjfgFYwqbdOhjHGUywU07xYXeM-C4ieaUOUvNHs2EuBvtNuCB3bwwAAP7OCBa3jgGh7YwgM7ePxBV4cHl_tHHZdBoyOjkA47AVVMKcZ0kodCExnk3ThXcSKA9lEu0khq0MmCay7CRNBcc0q1COGIAhVIFS2iqfKuVEsIp4IREdM8JObfupCMk0glXDAtoR5Nl1HXf5dMuvDyJsvJbfauPJbRVlNlYGOrfHQz8R87c-TQkr4MgPNRtY2WYEYdpd2UwLusfOUhVtHMaBysoanh_YNaRz_k4_C6ut9wsHoFSsOS8w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+methods+for+solving+fully+fuzzy+linear+systems&rft.jtitle=Applied+mathematics+and+computation&rft.au=Dehghan%2C+Mehdi&rft.au=Hashemi%2C+Behnam&rft.au=Ghatee%2C+Mehdi&rft.date=2006-08-01&rft.issn=0096-3003&rft.volume=179&rft.issue=1&rft.spage=328&rft.epage=343&rft_id=info:doi/10.1016%2Fj.amc.2005.11.124&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2005_11_124
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon