Convolution equation with a kernel represented by gamma distributions

The convolution integral equation is considered on the half-line and on a finite interval. Its kernel function is the distribution density of a random variable represented as a two-sided mixture of gamma distributions. The method of numerical-analytical solution of this equation is developed, and th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of mathematical sciences (New York, N.Y.) Ročník 204; číslo 3; s. 271 - 279
Hlavní autor: Barseghyan, Ani G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 04.01.2015
Springer
Témata:
ISSN:1072-3374, 1573-8795
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The convolution integral equation is considered on the half-line and on a finite interval. Its kernel function is the distribution density of a random variable represented as a two-sided mixture of gamma distributions. The method of numerical-analytical solution of this equation is developed, and the solution of the homogeneous conservative equation on the half-line is constructed.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-014-2201-8