Convolution equation with a kernel represented by gamma distributions
The convolution integral equation is considered on the half-line and on a finite interval. Its kernel function is the distribution density of a random variable represented as a two-sided mixture of gamma distributions. The method of numerical-analytical solution of this equation is developed, and th...
Uloženo v:
| Vydáno v: | Journal of mathematical sciences (New York, N.Y.) Ročník 204; číslo 3; s. 271 - 279 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Boston
Springer US
04.01.2015
Springer |
| Témata: | |
| ISSN: | 1072-3374, 1573-8795 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The convolution integral equation is considered on the half-line and on a finite interval. Its kernel function is the distribution density of a random variable represented as a two-sided mixture of gamma distributions. The method of numerical-analytical solution of this equation is developed, and the solution of the homogeneous conservative equation on the half-line is constructed. |
|---|---|
| ISSN: | 1072-3374 1573-8795 |
| DOI: | 10.1007/s10958-014-2201-8 |