Convolution equation with a kernel represented by gamma distributions
The convolution integral equation is considered on the half-line and on a finite interval. Its kernel function is the distribution density of a random variable represented as a two-sided mixture of gamma distributions. The method of numerical-analytical solution of this equation is developed, and th...
Gespeichert in:
| Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) Jg. 204; H. 3; S. 271 - 279 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Boston
Springer US
04.01.2015
Springer |
| Schlagworte: | |
| ISSN: | 1072-3374, 1573-8795 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | The convolution integral equation is considered on the half-line and on a finite interval. Its kernel function is the distribution density of a random variable represented as a two-sided mixture of gamma distributions. The method of numerical-analytical solution of this equation is developed, and the solution of the homogeneous conservative equation on the half-line is constructed. |
|---|---|
| ISSN: | 1072-3374 1573-8795 |
| DOI: | 10.1007/s10958-014-2201-8 |