A novel fully-implicit finite volume method applied to the lid-driven cavity problem-Part II: Linear stability analysis

A novel finite volume method, described in Part I of this paper (Sahin and Owens, Int. J. Numer. Meth. Fluids 2003; 42:57–77), is applied in the linear stability analysis of a lid‐driven cavity flow in a square enclosure. A combination of Arnoldi's method and extrapolation to zero mesh size all...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal for numerical methods in fluids Ročník 42; číslo 1; s. 79 - 88
Hlavní autoři: Sahin, Mehmet, Owens, Robert G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester, UK John Wiley & Sons, Ltd 10.05.2003
Wiley
Témata:
ISSN:0271-2091, 1097-0363
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A novel finite volume method, described in Part I of this paper (Sahin and Owens, Int. J. Numer. Meth. Fluids 2003; 42:57–77), is applied in the linear stability analysis of a lid‐driven cavity flow in a square enclosure. A combination of Arnoldi's method and extrapolation to zero mesh size allows us to determine the first critical Reynolds number at which Hopf bifurcation takes place. The extreme sensitivity of the predicted critical Reynolds number to the accuracy of the method and to the treatment of the singularity points is noted. Results are compared with those in the literature and are in very good agreement. Copyright © 2003 John Wiley & Sons, Ltd.
Bibliografie:ark:/67375/WNG-F2PF530P-R
ArticleID:FLD533
Swiss National Science Foundation - No. 21-61865.00
istex:CF23ED302C95DB457126D08607128BB9383EDE59
ISSN:0271-2091
1097-0363
DOI:10.1002/fld.533