A novel fully-implicit finite volume method applied to the lid-driven cavity problem-Part II: Linear stability analysis
A novel finite volume method, described in Part I of this paper (Sahin and Owens, Int. J. Numer. Meth. Fluids 2003; 42:57–77), is applied in the linear stability analysis of a lid‐driven cavity flow in a square enclosure. A combination of Arnoldi's method and extrapolation to zero mesh size all...
Saved in:
| Published in: | International journal for numerical methods in fluids Vol. 42; no. 1; pp. 79 - 88 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Chichester, UK
John Wiley & Sons, Ltd
10.05.2003
Wiley |
| Subjects: | |
| ISSN: | 0271-2091, 1097-0363 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A novel finite volume method, described in Part I of this paper (Sahin and Owens, Int. J. Numer. Meth. Fluids 2003; 42:57–77), is applied in the linear stability analysis of a lid‐driven cavity flow in a square enclosure. A combination of Arnoldi's method and extrapolation to zero mesh size allows us to determine the first critical Reynolds number at which Hopf bifurcation takes place. The extreme sensitivity of the predicted critical Reynolds number to the accuracy of the method and to the treatment of the singularity points is noted. Results are compared with those in the literature and are in very good agreement. Copyright © 2003 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | A novel finite volume method, described in Part I of this paper (Sahin and Owens, Int. J. Numer. Meth. Fluids 2003; 42:57–77), is applied in the linear stability analysis of a lid‐driven cavity flow in a square enclosure. A combination of Arnoldi's method and extrapolation to zero mesh size allows us to determine the first critical Reynolds number at which Hopf bifurcation takes place. The extreme sensitivity of the predicted critical Reynolds number to the accuracy of the method and to the treatment of the singularity points is noted. Results are compared with those in the literature and are in very good agreement. Copyright © 2003 John Wiley & Sons, Ltd. A novel finite volume method, described in Part I of this paper (Sahin and Owens, Int. J. Numer. Meth. Fluids 2003; 42 :57–77), is applied in the linear stability analysis of a lid‐driven cavity flow in a square enclosure. A combination of Arnoldi's method and extrapolation to zero mesh size allows us to determine the first critical Reynolds number at which Hopf bifurcation takes place. The extreme sensitivity of the predicted critical Reynolds number to the accuracy of the method and to the treatment of the singularity points is noted. Results are compared with those in the literature and are in very good agreement. Copyright © 2003 John Wiley & Sons, Ltd. |
| Author | Owens, Robert G. Sahin, Mehmet |
| Author_xml | – sequence: 1 givenname: Mehmet surname: Sahin fullname: Sahin, Mehmet organization: FSTI-ISE-LMF, Ecole Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland – sequence: 2 givenname: Robert G. surname: Owens fullname: Owens, Robert G. email: robert.owens@effl.ch organization: FSTI-ISE-LMF, Ecole Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14742225$$DView record in Pascal Francis |
| BookMark | eNp10E9LHDEYx_FQLHS1pW8hl9JDGZs_m8lOb6JdXVjsUioewzOZJ5g2kxmSuHbevSMrHlo85ZAPPx6-x-QoDhEJ-cjZKWdMfHWhO1VSviELzhpdMVnLI7JgQvNKsIa_I8c5_2aMNWIlF-ThjMZhj4G6-xCmyvdj8NYX6nz0Bel-CPc90h7L3dBRGOdf7GgZaLlDGnxXdcnvMVILe18mOqahDdhXO0iFbjbf6NZHhERzgdaHJwERwpR9fk_eOggZPzy_J-Rm_f3X-VW1_XG5OT_bVlYKLSuomXSSo5OglLWO4bJxbadrVWsEq5ei461eKQ4r28pO8lVdt-BE06qlsALlCfl02B0hWwguQbQ-mzH5HtJk-HKeEELNrjo4m4acEzozV4Dih1gS-GA4M091zVzXzHVn__kf_zL5n_xykA8-4PQaM-vtxUE_3-Fzwb8vGtIfU2uplbm9vjRrsVsryXbmp3wEKayarQ |
| CODEN | IJNFDW |
| CitedBy_id | crossref_primary_10_1016_j_compfluid_2018_01_038 crossref_primary_10_1088_0169_5983_48_6_061405 crossref_primary_10_1088_1873_7005_ab7bcf crossref_primary_10_1016_j_compfluid_2023_105897 crossref_primary_10_1016_j_jcp_2005_06_002 crossref_primary_10_1002_fld_4786 crossref_primary_10_1016_j_camwa_2013_02_020 crossref_primary_10_1016_j_jnnfm_2004_08_002 crossref_primary_10_1002_fld_1887 crossref_primary_10_1017_jfm_2019_512 crossref_primary_10_1016_j_compfluid_2013_08_019 crossref_primary_10_1002_fld_3665 crossref_primary_10_1016_j_cpc_2012_11_001 crossref_primary_10_1016_j_apm_2016_02_033 crossref_primary_10_1016_j_compfluid_2009_12_002 crossref_primary_10_1177_0958305X231215321 crossref_primary_10_1002_fld_442 crossref_primary_10_1016_j_euromechflu_2025_204313 crossref_primary_10_1016_j_ijheatmasstransfer_2013_08_032 crossref_primary_10_1016_j_jcp_2010_12_003 crossref_primary_10_1016_j_compfluid_2013_09_010 crossref_primary_10_1080_15502287_2016_1195459 crossref_primary_10_1016_j_jcp_2009_03_027 crossref_primary_10_1016_j_amc_2015_05_106 crossref_primary_10_1016_j_proeng_2013_07_100 crossref_primary_10_1017_jfm_2021_804 crossref_primary_10_1007_s00162_019_00483_1 crossref_primary_10_1016_j_jcp_2016_08_047 crossref_primary_10_1016_j_cjph_2022_03_044 crossref_primary_10_1016_j_amc_2015_06_038 crossref_primary_10_1016_S1001_6058_09_60096_2 crossref_primary_10_1016_j_euromechflu_2005_07_002 crossref_primary_10_1002_fld_2582 crossref_primary_10_1002_fld_2040 crossref_primary_10_1016_j_compfluid_2014_11_018 crossref_primary_10_5802_crmeca_166 crossref_primary_10_1016_j_camwa_2013_03_002 crossref_primary_10_1108_HFF_09_2016_0361 |
| Cites_doi | 10.1002/(SICI)1097-0363(19970315)24:5<477::AID-FLD500>3.0.CO;2-S 10.1137/S1064827500373395 10.1002/(SICI)1097-0363(19970615)24:11<1185::AID-FLD535>3.0.CO;2-X 10.1002/fld.442 10.1090/qam/42792 10.1016/S0045-7930(96)00032-1 10.1063/1.869686 10.1146/annurev.fluid.32.1.93 10.1016/0021-9991(90)90204-E 10.1016/0021-9991(92)90315-P 10.1016/0024-3795(80)90169-X 10.1016/S0021-9991(95)90068-3 10.1002/fld.121 10.1016/0021-9991(91)90261-I |
| ContentType | Journal Article |
| Copyright | Copyright © 2003 John Wiley & Sons, Ltd. 2003 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2003 John Wiley & Sons, Ltd. – notice: 2003 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW |
| DOI | 10.1002/fld.533 |
| DatabaseName | Istex CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Physics |
| EISSN | 1097-0363 |
| EndPage | 88 |
| ExternalDocumentID | 14742225 10_1002_fld_533 FLD533 ark_67375_WNG_F2PF530P_R |
| Genre | article |
| GrantInformation_xml | – fundername: Swiss National Science Foundation funderid: 21‐61865.00 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 SUPJJ TN5 TUS UB1 V2E VOH W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~A~ ~IA ~WT AAHHS ABTAH ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN RWI RWS WRC AAYXX CITATION O8X 6TJ ABEML ACSCC AGHNM AI. AMVHM HF~ IQODW M6O PALCI RIWAO RJQFR RYL SAMSI VH1 |
| ID | FETCH-LOGICAL-c3273-a603f31ef3a55ccf0e49fbd76567eac742d1b7851a8cb3d31866baf29b542c2e3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000182646300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0271-2091 |
| IngestDate | Mon Jul 21 09:15:12 EDT 2025 Sat Nov 29 06:13:08 EST 2025 Tue Nov 18 22:55:01 EST 2025 Wed Jan 22 16:25:22 EST 2025 Tue Nov 11 03:32:55 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Streamlines Computational fluid dynamics Digital simulation Vorticity Linear stability Unsteady flow Incompressible fluid Hopf bifurcation Cavity flow Finite volume methods Turbulent laminar transition Moving wall |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3273-a603f31ef3a55ccf0e49fbd76567eac742d1b7851a8cb3d31866baf29b542c2e3 |
| Notes | ark:/67375/WNG-F2PF530P-R ArticleID:FLD533 Swiss National Science Foundation - No. 21-61865.00 istex:CF23ED302C95DB457126D08607128BB9383EDE59 |
| PageCount | 10 |
| ParticipantIDs | pascalfrancis_primary_14742225 crossref_citationtrail_10_1002_fld_533 crossref_primary_10_1002_fld_533 wiley_primary_10_1002_fld_533_FLD533 istex_primary_ark_67375_WNG_F2PF530P_R |
| PublicationCentury | 2000 |
| PublicationDate | 10 May 2003 |
| PublicationDateYYYYMMDD | 2003-05-10 |
| PublicationDate_xml | – month: 05 year: 2003 text: 10 May 2003 day: 10 |
| PublicationDecade | 2000 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
| PublicationTitle | International journal for numerical methods in fluids |
| PublicationTitleAlternate | Int. J. Numer. Meth. Fluids |
| PublicationYear | 2003 |
| Publisher | John Wiley & Sons, Ltd Wiley |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
| References | Batoul A, Khallouf H, Labrosse G. Une méthode de résolution directe (pseudo-spectrale) du problème de Stokes 2D/3D instationnaire. Application à la cavité entrainée carrée. Comptes Rendus de l'Académie des Sciences de Paris 1994; 319(12):1455-1461. Sahin M, Owens RG. A novel fully-implicit finite volume method applied to the lid-driven cavity problem. Part I. High Reynolds number flow calculations. International Journal for Numerical Methods in Fluids 2003; 42:57-77. Saad Y. Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices. Linear Algebra and its Applications 1980; 34:269-295. Goodrich JW, Gustafson K, Halasi K. Hopf bifurcation in the driven cavity. Journal of Computational Physics 1990; 90(1):219-261. Shankar PN, Deshpande MD. Fluid mechanics in the driven cavity. Annual Review of Fluid Mechanics 2000; 32:93-136. Fortin A, Jardak M, Gervais JJ, Pierre R. Localization of Hopf bifurcations in fluid flow problems. International Journal for Numerical Methods in Fluids 1997; 24(11):1185-1210. Cazemier W, Verstappen RWCP, Veldman AEP. Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Physics of Fluids 1998; 10(7):1685-1699. Kupferman R. A central-difference scheme for a pure stream function formulation of incompressible viscous flow. SIAM Journal on Scientific Computing 2001; 23(1):1-18. Natarajan R. An Arnoldi-based iterative scheme for nonsymmetric matrix pencils arising in finite element stability problems. Journal of Computational Physics 1992; 100(1):128-142. Jennings A. Matrix Computation for Engineers and Scientists. Wiley: London, 1977. Botella O. On the solution of the Navier-Stokes equations using Chebyshev projection schemes with third-order accuracy in time. Computers & Fluids 1997; 26(2):107-116. Pan TW, Glowinski R. A projection/wave-like equation method for the numerical simulation of incompressible viscous fluid flow modeled by the Navier-Stokes equations. Computational Fluid Dynamics Journal 2000; 9(2):28-42. Arnoldi WE. The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quarterly of Applied Mathematics 1951; 9:17-29. Leriche E, Deville MO. A Uzawa-type pressure solver for the Lanczos-τ-Chebyshev spectral method. Computers & Fluids 2003; submitted. Poliashenko M, Aidun CK. A direct method for computation of simple bifurcations. Journal of Computational Physics 1995; 121(2):246-260. Shen J. Hopf bifurcation of the unsteady regularized driven cavity flow. Journal of Computational Physics 1991; 95(1):228-245. Botella O, Peyret R. Computing singular solutions of the Navier-Stokes equations with the Chebyshev-collocation method. International Journal for Numerical Methods in Fluids 2001; 36(2):125-163. Gervais JJ, Lemelin D, Pierre R. Some experiments with stability analysis of discrete incompressible flows in the lid-driven cavity. International Journal for Numerical Methods in Fluids 1997; 24(5):477-492. 1951; 9 1992; 100 2000; 32 1997; 26 2000; 9 1980; 34 1997; 24 1991; 95 2003 1994; 319 2001; 23 1995; 121 1998; 10 2001; 36 1990; 90 2003; 42 1977 Batoul A (e_1_2_1_4_2) 1994; 319 Leriche E (e_1_2_1_8_2) 2003 Jennings A (e_1_2_1_6_2) 1977 e_1_2_1_7_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_3_2 Pan TW (e_1_2_1_9_2) 2000; 9 e_1_2_1_12_2 e_1_2_1_10_2 e_1_2_1_15_2 e_1_2_1_16_2 e_1_2_1_13_2 e_1_2_1_14_2 e_1_2_1_19_2 e_1_2_1_17_2 e_1_2_1_18_2 |
| References_xml | – reference: Goodrich JW, Gustafson K, Halasi K. Hopf bifurcation in the driven cavity. Journal of Computational Physics 1990; 90(1):219-261. – reference: Sahin M, Owens RG. A novel fully-implicit finite volume method applied to the lid-driven cavity problem. Part I. High Reynolds number flow calculations. International Journal for Numerical Methods in Fluids 2003; 42:57-77. – reference: Shankar PN, Deshpande MD. Fluid mechanics in the driven cavity. Annual Review of Fluid Mechanics 2000; 32:93-136. – reference: Botella O. On the solution of the Navier-Stokes equations using Chebyshev projection schemes with third-order accuracy in time. Computers & Fluids 1997; 26(2):107-116. – reference: Leriche E, Deville MO. A Uzawa-type pressure solver for the Lanczos-τ-Chebyshev spectral method. Computers & Fluids 2003; submitted. – reference: Poliashenko M, Aidun CK. A direct method for computation of simple bifurcations. Journal of Computational Physics 1995; 121(2):246-260. – reference: Natarajan R. An Arnoldi-based iterative scheme for nonsymmetric matrix pencils arising in finite element stability problems. Journal of Computational Physics 1992; 100(1):128-142. – reference: Kupferman R. A central-difference scheme for a pure stream function formulation of incompressible viscous flow. SIAM Journal on Scientific Computing 2001; 23(1):1-18. – reference: Gervais JJ, Lemelin D, Pierre R. Some experiments with stability analysis of discrete incompressible flows in the lid-driven cavity. International Journal for Numerical Methods in Fluids 1997; 24(5):477-492. – reference: Cazemier W, Verstappen RWCP, Veldman AEP. Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Physics of Fluids 1998; 10(7):1685-1699. – reference: Shen J. Hopf bifurcation of the unsteady regularized driven cavity flow. Journal of Computational Physics 1991; 95(1):228-245. – reference: Batoul A, Khallouf H, Labrosse G. Une méthode de résolution directe (pseudo-spectrale) du problème de Stokes 2D/3D instationnaire. Application à la cavité entrainée carrée. Comptes Rendus de l'Académie des Sciences de Paris 1994; 319(12):1455-1461. – reference: Jennings A. Matrix Computation for Engineers and Scientists. Wiley: London, 1977. – reference: Botella O, Peyret R. Computing singular solutions of the Navier-Stokes equations with the Chebyshev-collocation method. International Journal for Numerical Methods in Fluids 2001; 36(2):125-163. – reference: Saad Y. Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices. Linear Algebra and its Applications 1980; 34:269-295. – reference: Pan TW, Glowinski R. A projection/wave-like equation method for the numerical simulation of incompressible viscous fluid flow modeled by the Navier-Stokes equations. Computational Fluid Dynamics Journal 2000; 9(2):28-42. – reference: Fortin A, Jardak M, Gervais JJ, Pierre R. Localization of Hopf bifurcations in fluid flow problems. International Journal for Numerical Methods in Fluids 1997; 24(11):1185-1210. – reference: Arnoldi WE. The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quarterly of Applied Mathematics 1951; 9:17-29. – volume: 34 start-page: 269 year: 1980 end-page: 295 article-title: Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices publication-title: Linear Algebra and its Applications – volume: 10 start-page: 1685 issue: 7 year: 1998 end-page: 1699 article-title: Proper orthogonal decomposition and low‐dimensional models for driven cavity flows publication-title: Physics of Fluids – volume: 121 start-page: 246 issue: 2 year: 1995 end-page: 260 article-title: A direct method for computation of simple bifurcations publication-title: Journal of Computational Physics – volume: 26 start-page: 107 issue: 2 year: 1997 end-page: 116 article-title: On the solution of the Navier‐Stokes equations using Chebyshev projection schemes with third‐order accuracy in time publication-title: Computers & Fluids – volume: 42 start-page: 57 year: 2003 end-page: 77 article-title: A novel fully‐implicit finite volume method applied to the lid‐driven cavity problem. Part I. High Reynolds number flow calculations publication-title: International Journal for Numerical Methods in Fluids – volume: 95 start-page: 228 issue: 1 year: 1991 end-page: 245 article-title: Hopf bifurcation of the unsteady regularized driven cavity flow publication-title: Journal of Computational Physics – volume: 32 start-page: 93 year: 2000 end-page: 136 article-title: Fluid mechanics in the driven cavity publication-title: Annual Review of Fluid Mechanics – volume: 319 start-page: 1455 issue: 12 year: 1994 end-page: 1461 article-title: Une méthode de résolution directe (pseudo‐spectrale) du problème de Stokes 2D/3D instationnaire. Application à la cavité entrainée carrée publication-title: Comptes Rendus de l'Académie des Sciences de Paris – volume: 24 start-page: 477 issue: 5 year: 1997 end-page: 492 article-title: Some experiments with stability analysis of discrete incompressible flows in the lid‐driven cavity publication-title: International Journal for Numerical Methods in Fluids – volume: 9 start-page: 17 year: 1951 end-page: 29 article-title: The principle of minimized iterations in the solution of the matrix eigenvalue problem publication-title: Quarterly of Applied Mathematics – volume: 23 start-page: 1 issue: 1 year: 2001 end-page: 18 article-title: A central‐difference scheme for a pure stream function formulation of incompressible viscous flow publication-title: SIAM Journal on Scientific Computing – volume: 24 start-page: 1185 issue: 11 year: 1997 end-page: 1210 article-title: Localization of Hopf bifurcations in fluid flow problems publication-title: International Journal for Numerical Methods in Fluids – volume: 9 start-page: 28 issue: 2 year: 2000 end-page: 42 article-title: A projection/wave‐like equation method for the numerical simulation of incompressible viscous fluid flow modeled by the Navier‐Stokes equations publication-title: Computational Fluid Dynamics Journal – volume: 36 start-page: 125 issue: 2 year: 2001 end-page: 163 article-title: Computing singular solutions of the Navier‐Stokes equations with the Chebyshev‐collocation method publication-title: International Journal for Numerical Methods in Fluids – volume: 90 start-page: 219 issue: 1 year: 1990 end-page: 261 article-title: Hopf bifurcation in the driven cavity publication-title: Journal of Computational Physics – year: 2003 article-title: A Uzawa‐type pressure solver for the Lanczos‐τ‐Chebyshev spectral method publication-title: Computers & Fluids – volume: 100 start-page: 128 issue: 1 year: 1992 end-page: 142 article-title: An Arnoldi‐based iterative scheme for nonsymmetric matrix pencils arising in finite element stability problems publication-title: Journal of Computational Physics – year: 1977 – volume: 9 start-page: 28 issue: 2 year: 2000 ident: e_1_2_1_9_2 article-title: A projection/wave‐like equation method for the numerical simulation of incompressible viscous fluid flow modeled by the Navier‐Stokes equations publication-title: Computational Fluid Dynamics Journal – ident: e_1_2_1_13_2 doi: 10.1002/(SICI)1097-0363(19970315)24:5<477::AID-FLD500>3.0.CO;2-S – ident: e_1_2_1_10_2 doi: 10.1137/S1064827500373395 – ident: e_1_2_1_7_2 doi: 10.1002/(SICI)1097-0363(19970615)24:11<1185::AID-FLD535>3.0.CO;2-X – ident: e_1_2_1_16_2 doi: 10.1002/fld.442 – ident: e_1_2_1_17_2 doi: 10.1090/qam/42792 – ident: e_1_2_1_5_2 doi: 10.1016/S0045-7930(96)00032-1 – volume: 319 start-page: 1455 issue: 12 year: 1994 ident: e_1_2_1_4_2 article-title: Une méthode de résolution directe (pseudo‐spectrale) du problème de Stokes 2D/3D instationnaire. Application à la cavité entrainée carrée publication-title: Comptes Rendus de l'Académie des Sciences de Paris – ident: e_1_2_1_14_2 doi: 10.1063/1.869686 – ident: e_1_2_1_2_2 doi: 10.1146/annurev.fluid.32.1.93 – ident: e_1_2_1_15_2 doi: 10.1016/0021-9991(90)90204-E – ident: e_1_2_1_19_2 doi: 10.1016/0021-9991(92)90315-P – volume-title: Matrix Computation for Engineers and Scientists year: 1977 ident: e_1_2_1_6_2 – year: 2003 ident: e_1_2_1_8_2 article-title: A Uzawa‐type pressure solver for the Lanczos‐τ‐Chebyshev spectral method publication-title: Computers & Fluids – ident: e_1_2_1_18_2 doi: 10.1016/0024-3795(80)90169-X – ident: e_1_2_1_12_2 doi: 10.1016/S0021-9991(95)90068-3 – ident: e_1_2_1_11_2 doi: 10.1002/fld.121 – ident: e_1_2_1_3_2 doi: 10.1016/0021-9991(91)90261-I |
| SSID | ssj0009283 |
| Score | 1.9071045 |
| Snippet | A novel finite volume method, described in Part I of this paper (Sahin and Owens, Int. J. Numer. Meth. Fluids 2003; 42:57–77), is applied in the linear... A novel finite volume method, described in Part I of this paper (Sahin and Owens, Int. J. Numer. Meth. Fluids 2003; 42 :57–77), is applied in the linear... |
| SourceID | pascalfrancis crossref wiley istex |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 79 |
| SubjectTerms | Computational methods in fluid dynamics Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) implicit finite volume methods Laminar flows Laminar flows in cavities lid-driven cavity flow linear stability Physics Stability of laminar flows |
| Title | A novel fully-implicit finite volume method applied to the lid-driven cavity problem-Part II: Linear stability analysis |
| URI | https://api.istex.fr/ark:/67375/WNG-F2PF530P-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.533 |
| Volume | 42 |
| WOSCitedRecordID | wos000182646300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0363 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009283 issn: 0271-2091 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELVglwMcKBQQC6WaQ9VbaGI7cdJb1RKoVK1WFRW9Rf6IpairXbS7rdoDUn8Ch_7C_hLGH-x2hZCQOOUQ27HGM-Nna_IeITsm55pVVic202nCRSqTEoFFojQrjRVVWmjuxSbEcFien1ejB1JfgR9ieeHmIsPnaxfgUs33VqShdmw-IlZ5TPoUvZb3SP_otD47WTHu0sDBSUWGrlBl4Y9Z13kvdl3bivrOqteuNFLO0To2yFqsQ1a_59Qb_zHbF-R5BJpwEDzjJXnUTjbJRgSdEEN6vkmePWAkfEV-HMBketWOwV3L39zf_ux8xXm3ANs5dAohm0EQngYZh1tMAYEkjDuDXczMZVDQ0slSQFSsub-9G6GXwvHxPuD5F-MLEJf6ytwbkJEZ5TU5qz99PfySRIWGRDPEPYksUmZZ1lom81xrm7a8ssoIBIkCMzoeu02mBII6WWrFDHPsekpaWqmcU01b9ob0JtNJ-5ZAIQyCK14oUZWctqoqqlxqalKuuCmzfEB2fy9WoyN9uVPRGDeBeJk2aOIGTTwgsGz4PTB2_Nlk16_28r2cXbgCN5E334afm5qO6pylo-Z0QLbX3GE1IBfu7gxnteNX_W9fauqTI3y8-7dm78lTXyvoyWG3SG8xu2w_kCf6atHNZ9vRwX8BqDwDbA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Bb9MwFH6CFgk4MBigdYzhw7RbWGI7ccxtYoRVlKqaNrFb5NixFFG1U1smdkDaT9iBX7hfwrPjtVQICYlTDrGd6Pm958_W8_cB7JmUayatjmyi44iLWEU5Aouo0iw3Vsg409yLTYjhMD8_l6NQVenuwrT8EMsDNxcZPl-7AHcH0gcr1lA7Nm8RrNyHLkcnSjvQPTopzgYryl3aknBSkaAvyKS9Mus6H4Sua2tR15n1u6uNVHM0j211LdYxq190io3_-d2n8CRATXLY-sYzuFdPNmEjwE4Sgnq-CY9_4yR8Dj8OyWR6WY-JG_jq9vqm8TXnzYLYxuFT0uYz0kpPExWGW0wJQkkybgx2MTOXQ4lWTpiCBM2a2-ufI_RT0u-_I7gDxggjiEx9be4VUYEb5QWcFR9O3x9HQaMh0gyRT6SymFmW1JapNNXaxjWXtjICYaLAnI4bb5NUAmGdynXFDHP8epWyVFYpp5rW7CV0JtNJvQUkEwbhFc8qIXNO60pmMlWamphX3ORJ2oP9u9kqdSAwdzoa47KlXqYlmrhEE_eALBtetJwdfzbZ99O9fK9mX12Jm0jLL8OPZUFHRcriUXnSg901f1gNyIU7PcO_2vPT_rcvlcXgCB_b_9bsDTw8Pv08KAf94adX8MhXDnqq2B3oLGbf6tfwQF8umvlsN3j7LxoQB1w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZgRQgOGwwQZTB8mHYLS2wnjnebKIGKqoomJnazHP-QIqp2asvEDkj7EzjwF-4v2XNsWiqEhMQph9hO9Pze82fr-fsQOjA501Q4nbhMpwnjqUpKABZJo2lpHBdpoVknNsHH4_L8XNSxqtLfhQn8EKsDNx8ZXb72AW4vjDtas4a6iXkDYOUu6rFcFBCUvcFpdTZaU-6SQMJJeAa-ILJwZdZ3PopdN9ainjfrN18bqRZgHhd0LTYxa7foVDv_87uP0HaEmvgk-MZjdMdOd9FOhJ04BvViFz38jZPwCfp-gqezSzvB_mD-6ub6R9vVnLdL7FqPT3HIZzhIT2MVh1vOMEBJPGkNdDFzn0OxVl6YAkfNmpvrnzX4KR4OjzHsgCHCMCDTrjb3CqvIjfIUnVXvPr39kESNhkRTQD6JKlLqaGYdVXmutUstE64xHGAih5wOG2-TNRxgnSp1Qw31_HqNckQ0OSOaWPoMbU1nU_sc4YIbgFesaLgoGbGNKESuNDEpa5gps7yPDn_NltSRwNzraExkoF4mEkwswcR9hFcNLwJnx59NDrvpXr1X8y--xI3n8vP4vaxIXeU0reVpH-1v-MN6QMb96Rn81UE37X_7kqxGA3i8-Ldmr9H9elDJ0XD8cQ896AoHO6bYl2hrOf9qX6F7-nLZLub70dlvAZ1iBtc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+fully-implicit+finite+volume+method+applied+to+the+lid-driven+cavity+problem.+Part+II.+Linear+stability+analysis&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=SAHIN%2C+Mehmet&rft.au=OWENS%2C+Robert+G&rft.date=2003-05-10&rft.pub=Wiley&rft.issn=0271-2091&rft.volume=42&rft.issue=1&rft.spage=79&rft.epage=88&rft_id=info:doi/10.1002%2Ffld.533&rft.externalDBID=n%2Fa&rft.externalDocID=14742225 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon |