A novel fully-implicit finite volume method applied to the lid-driven cavity problem-Part II: Linear stability analysis

A novel finite volume method, described in Part I of this paper (Sahin and Owens, Int. J. Numer. Meth. Fluids 2003; 42:57–77), is applied in the linear stability analysis of a lid‐driven cavity flow in a square enclosure. A combination of Arnoldi's method and extrapolation to zero mesh size all...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal for numerical methods in fluids Ročník 42; číslo 1; s. 79 - 88
Hlavní autoři: Sahin, Mehmet, Owens, Robert G.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester, UK John Wiley & Sons, Ltd 10.05.2003
Wiley
Témata:
ISSN:0271-2091, 1097-0363
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A novel finite volume method, described in Part I of this paper (Sahin and Owens, Int. J. Numer. Meth. Fluids 2003; 42:57–77), is applied in the linear stability analysis of a lid‐driven cavity flow in a square enclosure. A combination of Arnoldi's method and extrapolation to zero mesh size allows us to determine the first critical Reynolds number at which Hopf bifurcation takes place. The extreme sensitivity of the predicted critical Reynolds number to the accuracy of the method and to the treatment of the singularity points is noted. Results are compared with those in the literature and are in very good agreement. Copyright © 2003 John Wiley & Sons, Ltd.
AbstractList A novel finite volume method, described in Part I of this paper (Sahin and Owens, Int. J. Numer. Meth. Fluids 2003; 42:57–77), is applied in the linear stability analysis of a lid‐driven cavity flow in a square enclosure. A combination of Arnoldi's method and extrapolation to zero mesh size allows us to determine the first critical Reynolds number at which Hopf bifurcation takes place. The extreme sensitivity of the predicted critical Reynolds number to the accuracy of the method and to the treatment of the singularity points is noted. Results are compared with those in the literature and are in very good agreement. Copyright © 2003 John Wiley & Sons, Ltd.
A novel finite volume method, described in Part I of this paper (Sahin and Owens, Int. J. Numer. Meth. Fluids 2003; 42 :57–77), is applied in the linear stability analysis of a lid‐driven cavity flow in a square enclosure. A combination of Arnoldi's method and extrapolation to zero mesh size allows us to determine the first critical Reynolds number at which Hopf bifurcation takes place. The extreme sensitivity of the predicted critical Reynolds number to the accuracy of the method and to the treatment of the singularity points is noted. Results are compared with those in the literature and are in very good agreement. Copyright © 2003 John Wiley & Sons, Ltd.
Author Owens, Robert G.
Sahin, Mehmet
Author_xml – sequence: 1
  givenname: Mehmet
  surname: Sahin
  fullname: Sahin, Mehmet
  organization: FSTI-ISE-LMF, Ecole Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland
– sequence: 2
  givenname: Robert G.
  surname: Owens
  fullname: Owens, Robert G.
  email: robert.owens@effl.ch
  organization: FSTI-ISE-LMF, Ecole Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14742225$$DView record in Pascal Francis
BookMark eNp10E9LHDEYx_FQLHS1pW8hl9JDGZs_m8lOb6JdXVjsUioewzOZJ5g2kxmSuHbevSMrHlo85ZAPPx6-x-QoDhEJ-cjZKWdMfHWhO1VSviELzhpdMVnLI7JgQvNKsIa_I8c5_2aMNWIlF-ThjMZhj4G6-xCmyvdj8NYX6nz0Bel-CPc90h7L3dBRGOdf7GgZaLlDGnxXdcnvMVILe18mOqahDdhXO0iFbjbf6NZHhERzgdaHJwERwpR9fk_eOggZPzy_J-Rm_f3X-VW1_XG5OT_bVlYKLSuomXSSo5OglLWO4bJxbadrVWsEq5ei461eKQ4r28pO8lVdt-BE06qlsALlCfl02B0hWwguQbQ-mzH5HtJk-HKeEELNrjo4m4acEzozV4Dih1gS-GA4M091zVzXzHVn__kf_zL5n_xykA8-4PQaM-vtxUE_3-Fzwb8vGtIfU2uplbm9vjRrsVsryXbmp3wEKayarQ
CODEN IJNFDW
CitedBy_id crossref_primary_10_1016_j_compfluid_2018_01_038
crossref_primary_10_1088_0169_5983_48_6_061405
crossref_primary_10_1088_1873_7005_ab7bcf
crossref_primary_10_1016_j_compfluid_2023_105897
crossref_primary_10_1016_j_jcp_2005_06_002
crossref_primary_10_1002_fld_4786
crossref_primary_10_1016_j_camwa_2013_02_020
crossref_primary_10_1016_j_jnnfm_2004_08_002
crossref_primary_10_1002_fld_1887
crossref_primary_10_1017_jfm_2019_512
crossref_primary_10_1016_j_compfluid_2013_08_019
crossref_primary_10_1002_fld_3665
crossref_primary_10_1016_j_cpc_2012_11_001
crossref_primary_10_1016_j_apm_2016_02_033
crossref_primary_10_1016_j_compfluid_2009_12_002
crossref_primary_10_1177_0958305X231215321
crossref_primary_10_1002_fld_442
crossref_primary_10_1016_j_euromechflu_2025_204313
crossref_primary_10_1016_j_ijheatmasstransfer_2013_08_032
crossref_primary_10_1016_j_jcp_2010_12_003
crossref_primary_10_1016_j_compfluid_2013_09_010
crossref_primary_10_1080_15502287_2016_1195459
crossref_primary_10_1016_j_jcp_2009_03_027
crossref_primary_10_1016_j_amc_2015_05_106
crossref_primary_10_1016_j_proeng_2013_07_100
crossref_primary_10_1017_jfm_2021_804
crossref_primary_10_1007_s00162_019_00483_1
crossref_primary_10_1016_j_jcp_2016_08_047
crossref_primary_10_1016_j_cjph_2022_03_044
crossref_primary_10_1016_j_amc_2015_06_038
crossref_primary_10_1016_S1001_6058_09_60096_2
crossref_primary_10_1016_j_euromechflu_2005_07_002
crossref_primary_10_1002_fld_2582
crossref_primary_10_1002_fld_2040
crossref_primary_10_1016_j_compfluid_2014_11_018
crossref_primary_10_5802_crmeca_166
crossref_primary_10_1016_j_camwa_2013_03_002
crossref_primary_10_1108_HFF_09_2016_0361
Cites_doi 10.1002/(SICI)1097-0363(19970315)24:5<477::AID-FLD500>3.0.CO;2-S
10.1137/S1064827500373395
10.1002/(SICI)1097-0363(19970615)24:11<1185::AID-FLD535>3.0.CO;2-X
10.1002/fld.442
10.1090/qam/42792
10.1016/S0045-7930(96)00032-1
10.1063/1.869686
10.1146/annurev.fluid.32.1.93
10.1016/0021-9991(90)90204-E
10.1016/0021-9991(92)90315-P
10.1016/0024-3795(80)90169-X
10.1016/S0021-9991(95)90068-3
10.1002/fld.121
10.1016/0021-9991(91)90261-I
ContentType Journal Article
Copyright Copyright © 2003 John Wiley & Sons, Ltd.
2003 INIST-CNRS
Copyright_xml – notice: Copyright © 2003 John Wiley & Sons, Ltd.
– notice: 2003 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
DOI 10.1002/fld.533
DatabaseName Istex
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1097-0363
EndPage 88
ExternalDocumentID 14742225
10_1002_fld_533
FLD533
ark_67375_WNG_F2PF530P_R
Genre article
GrantInformation_xml – fundername: Swiss National Science Foundation
  funderid: 21‐61865.00
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
TUS
UB1
V2E
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~A~
~IA
~WT
AAHHS
ABTAH
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
RWS
WRC
AAYXX
CITATION
O8X
6TJ
ABEML
ACSCC
AGHNM
AI.
AMVHM
HF~
IQODW
M6O
PALCI
RIWAO
RJQFR
RYL
SAMSI
VH1
ID FETCH-LOGICAL-c3273-a603f31ef3a55ccf0e49fbd76567eac742d1b7851a8cb3d31866baf29b542c2e3
IEDL.DBID DRFUL
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000182646300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0271-2091
IngestDate Mon Jul 21 09:15:12 EDT 2025
Sat Nov 29 06:13:08 EST 2025
Tue Nov 18 22:55:01 EST 2025
Wed Jan 22 16:25:22 EST 2025
Tue Nov 11 03:32:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Streamlines
Computational fluid dynamics
Digital simulation
Vorticity
Linear stability
Unsteady flow
Incompressible fluid
Hopf bifurcation
Cavity flow
Finite volume methods
Turbulent laminar transition
Moving wall
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3273-a603f31ef3a55ccf0e49fbd76567eac742d1b7851a8cb3d31866baf29b542c2e3
Notes ark:/67375/WNG-F2PF530P-R
ArticleID:FLD533
Swiss National Science Foundation - No. 21-61865.00
istex:CF23ED302C95DB457126D08607128BB9383EDE59
PageCount 10
ParticipantIDs pascalfrancis_primary_14742225
crossref_citationtrail_10_1002_fld_533
crossref_primary_10_1002_fld_533
wiley_primary_10_1002_fld_533_FLD533
istex_primary_ark_67375_WNG_F2PF530P_R
PublicationCentury 2000
PublicationDate 10 May 2003
PublicationDateYYYYMMDD 2003-05-10
PublicationDate_xml – month: 05
  year: 2003
  text: 10 May 2003
  day: 10
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in fluids
PublicationTitleAlternate Int. J. Numer. Meth. Fluids
PublicationYear 2003
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Batoul A, Khallouf H, Labrosse G. Une méthode de résolution directe (pseudo-spectrale) du problème de Stokes 2D/3D instationnaire. Application à la cavité entrainée carrée. Comptes Rendus de l'Académie des Sciences de Paris 1994; 319(12):1455-1461.
Sahin M, Owens RG. A novel fully-implicit finite volume method applied to the lid-driven cavity problem. Part I. High Reynolds number flow calculations. International Journal for Numerical Methods in Fluids 2003; 42:57-77.
Saad Y. Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices. Linear Algebra and its Applications 1980; 34:269-295.
Goodrich JW, Gustafson K, Halasi K. Hopf bifurcation in the driven cavity. Journal of Computational Physics 1990; 90(1):219-261.
Shankar PN, Deshpande MD. Fluid mechanics in the driven cavity. Annual Review of Fluid Mechanics 2000; 32:93-136.
Fortin A, Jardak M, Gervais JJ, Pierre R. Localization of Hopf bifurcations in fluid flow problems. International Journal for Numerical Methods in Fluids 1997; 24(11):1185-1210.
Cazemier W, Verstappen RWCP, Veldman AEP. Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Physics of Fluids 1998; 10(7):1685-1699.
Kupferman R. A central-difference scheme for a pure stream function formulation of incompressible viscous flow. SIAM Journal on Scientific Computing 2001; 23(1):1-18.
Natarajan R. An Arnoldi-based iterative scheme for nonsymmetric matrix pencils arising in finite element stability problems. Journal of Computational Physics 1992; 100(1):128-142.
Jennings A. Matrix Computation for Engineers and Scientists. Wiley: London, 1977.
Botella O. On the solution of the Navier-Stokes equations using Chebyshev projection schemes with third-order accuracy in time. Computers & Fluids 1997; 26(2):107-116.
Pan TW, Glowinski R. A projection/wave-like equation method for the numerical simulation of incompressible viscous fluid flow modeled by the Navier-Stokes equations. Computational Fluid Dynamics Journal 2000; 9(2):28-42.
Arnoldi WE. The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quarterly of Applied Mathematics 1951; 9:17-29.
Leriche E, Deville MO. A Uzawa-type pressure solver for the Lanczos-τ-Chebyshev spectral method. Computers & Fluids 2003; submitted.
Poliashenko M, Aidun CK. A direct method for computation of simple bifurcations. Journal of Computational Physics 1995; 121(2):246-260.
Shen J. Hopf bifurcation of the unsteady regularized driven cavity flow. Journal of Computational Physics 1991; 95(1):228-245.
Botella O, Peyret R. Computing singular solutions of the Navier-Stokes equations with the Chebyshev-collocation method. International Journal for Numerical Methods in Fluids 2001; 36(2):125-163.
Gervais JJ, Lemelin D, Pierre R. Some experiments with stability analysis of discrete incompressible flows in the lid-driven cavity. International Journal for Numerical Methods in Fluids 1997; 24(5):477-492.
1951; 9
1992; 100
2000; 32
1997; 26
2000; 9
1980; 34
1997; 24
1991; 95
2003
1994; 319
2001; 23
1995; 121
1998; 10
2001; 36
1990; 90
2003; 42
1977
Batoul A (e_1_2_1_4_2) 1994; 319
Leriche E (e_1_2_1_8_2) 2003
Jennings A (e_1_2_1_6_2) 1977
e_1_2_1_7_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_3_2
Pan TW (e_1_2_1_9_2) 2000; 9
e_1_2_1_12_2
e_1_2_1_10_2
e_1_2_1_15_2
e_1_2_1_16_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_19_2
e_1_2_1_17_2
e_1_2_1_18_2
References_xml – reference: Goodrich JW, Gustafson K, Halasi K. Hopf bifurcation in the driven cavity. Journal of Computational Physics 1990; 90(1):219-261.
– reference: Sahin M, Owens RG. A novel fully-implicit finite volume method applied to the lid-driven cavity problem. Part I. High Reynolds number flow calculations. International Journal for Numerical Methods in Fluids 2003; 42:57-77.
– reference: Shankar PN, Deshpande MD. Fluid mechanics in the driven cavity. Annual Review of Fluid Mechanics 2000; 32:93-136.
– reference: Botella O. On the solution of the Navier-Stokes equations using Chebyshev projection schemes with third-order accuracy in time. Computers & Fluids 1997; 26(2):107-116.
– reference: Leriche E, Deville MO. A Uzawa-type pressure solver for the Lanczos-τ-Chebyshev spectral method. Computers & Fluids 2003; submitted.
– reference: Poliashenko M, Aidun CK. A direct method for computation of simple bifurcations. Journal of Computational Physics 1995; 121(2):246-260.
– reference: Natarajan R. An Arnoldi-based iterative scheme for nonsymmetric matrix pencils arising in finite element stability problems. Journal of Computational Physics 1992; 100(1):128-142.
– reference: Kupferman R. A central-difference scheme for a pure stream function formulation of incompressible viscous flow. SIAM Journal on Scientific Computing 2001; 23(1):1-18.
– reference: Gervais JJ, Lemelin D, Pierre R. Some experiments with stability analysis of discrete incompressible flows in the lid-driven cavity. International Journal for Numerical Methods in Fluids 1997; 24(5):477-492.
– reference: Cazemier W, Verstappen RWCP, Veldman AEP. Proper orthogonal decomposition and low-dimensional models for driven cavity flows. Physics of Fluids 1998; 10(7):1685-1699.
– reference: Shen J. Hopf bifurcation of the unsteady regularized driven cavity flow. Journal of Computational Physics 1991; 95(1):228-245.
– reference: Batoul A, Khallouf H, Labrosse G. Une méthode de résolution directe (pseudo-spectrale) du problème de Stokes 2D/3D instationnaire. Application à la cavité entrainée carrée. Comptes Rendus de l'Académie des Sciences de Paris 1994; 319(12):1455-1461.
– reference: Jennings A. Matrix Computation for Engineers and Scientists. Wiley: London, 1977.
– reference: Botella O, Peyret R. Computing singular solutions of the Navier-Stokes equations with the Chebyshev-collocation method. International Journal for Numerical Methods in Fluids 2001; 36(2):125-163.
– reference: Saad Y. Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices. Linear Algebra and its Applications 1980; 34:269-295.
– reference: Pan TW, Glowinski R. A projection/wave-like equation method for the numerical simulation of incompressible viscous fluid flow modeled by the Navier-Stokes equations. Computational Fluid Dynamics Journal 2000; 9(2):28-42.
– reference: Fortin A, Jardak M, Gervais JJ, Pierre R. Localization of Hopf bifurcations in fluid flow problems. International Journal for Numerical Methods in Fluids 1997; 24(11):1185-1210.
– reference: Arnoldi WE. The principle of minimized iterations in the solution of the matrix eigenvalue problem. Quarterly of Applied Mathematics 1951; 9:17-29.
– volume: 34
  start-page: 269
  year: 1980
  end-page: 295
  article-title: Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices
  publication-title: Linear Algebra and its Applications
– volume: 10
  start-page: 1685
  issue: 7
  year: 1998
  end-page: 1699
  article-title: Proper orthogonal decomposition and low‐dimensional models for driven cavity flows
  publication-title: Physics of Fluids
– volume: 121
  start-page: 246
  issue: 2
  year: 1995
  end-page: 260
  article-title: A direct method for computation of simple bifurcations
  publication-title: Journal of Computational Physics
– volume: 26
  start-page: 107
  issue: 2
  year: 1997
  end-page: 116
  article-title: On the solution of the Navier‐Stokes equations using Chebyshev projection schemes with third‐order accuracy in time
  publication-title: Computers & Fluids
– volume: 42
  start-page: 57
  year: 2003
  end-page: 77
  article-title: A novel fully‐implicit finite volume method applied to the lid‐driven cavity problem. Part I. High Reynolds number flow calculations
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 95
  start-page: 228
  issue: 1
  year: 1991
  end-page: 245
  article-title: Hopf bifurcation of the unsteady regularized driven cavity flow
  publication-title: Journal of Computational Physics
– volume: 32
  start-page: 93
  year: 2000
  end-page: 136
  article-title: Fluid mechanics in the driven cavity
  publication-title: Annual Review of Fluid Mechanics
– volume: 319
  start-page: 1455
  issue: 12
  year: 1994
  end-page: 1461
  article-title: Une méthode de résolution directe (pseudo‐spectrale) du problème de Stokes 2D/3D instationnaire. Application à la cavité entrainée carrée
  publication-title: Comptes Rendus de l'Académie des Sciences de Paris
– volume: 24
  start-page: 477
  issue: 5
  year: 1997
  end-page: 492
  article-title: Some experiments with stability analysis of discrete incompressible flows in the lid‐driven cavity
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 9
  start-page: 17
  year: 1951
  end-page: 29
  article-title: The principle of minimized iterations in the solution of the matrix eigenvalue problem
  publication-title: Quarterly of Applied Mathematics
– volume: 23
  start-page: 1
  issue: 1
  year: 2001
  end-page: 18
  article-title: A central‐difference scheme for a pure stream function formulation of incompressible viscous flow
  publication-title: SIAM Journal on Scientific Computing
– volume: 24
  start-page: 1185
  issue: 11
  year: 1997
  end-page: 1210
  article-title: Localization of Hopf bifurcations in fluid flow problems
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 9
  start-page: 28
  issue: 2
  year: 2000
  end-page: 42
  article-title: A projection/wave‐like equation method for the numerical simulation of incompressible viscous fluid flow modeled by the Navier‐Stokes equations
  publication-title: Computational Fluid Dynamics Journal
– volume: 36
  start-page: 125
  issue: 2
  year: 2001
  end-page: 163
  article-title: Computing singular solutions of the Navier‐Stokes equations with the Chebyshev‐collocation method
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 90
  start-page: 219
  issue: 1
  year: 1990
  end-page: 261
  article-title: Hopf bifurcation in the driven cavity
  publication-title: Journal of Computational Physics
– year: 2003
  article-title: A Uzawa‐type pressure solver for the Lanczos‐τ‐Chebyshev spectral method
  publication-title: Computers & Fluids
– volume: 100
  start-page: 128
  issue: 1
  year: 1992
  end-page: 142
  article-title: An Arnoldi‐based iterative scheme for nonsymmetric matrix pencils arising in finite element stability problems
  publication-title: Journal of Computational Physics
– year: 1977
– volume: 9
  start-page: 28
  issue: 2
  year: 2000
  ident: e_1_2_1_9_2
  article-title: A projection/wave‐like equation method for the numerical simulation of incompressible viscous fluid flow modeled by the Navier‐Stokes equations
  publication-title: Computational Fluid Dynamics Journal
– ident: e_1_2_1_13_2
  doi: 10.1002/(SICI)1097-0363(19970315)24:5<477::AID-FLD500>3.0.CO;2-S
– ident: e_1_2_1_10_2
  doi: 10.1137/S1064827500373395
– ident: e_1_2_1_7_2
  doi: 10.1002/(SICI)1097-0363(19970615)24:11<1185::AID-FLD535>3.0.CO;2-X
– ident: e_1_2_1_16_2
  doi: 10.1002/fld.442
– ident: e_1_2_1_17_2
  doi: 10.1090/qam/42792
– ident: e_1_2_1_5_2
  doi: 10.1016/S0045-7930(96)00032-1
– volume: 319
  start-page: 1455
  issue: 12
  year: 1994
  ident: e_1_2_1_4_2
  article-title: Une méthode de résolution directe (pseudo‐spectrale) du problème de Stokes 2D/3D instationnaire. Application à la cavité entrainée carrée
  publication-title: Comptes Rendus de l'Académie des Sciences de Paris
– ident: e_1_2_1_14_2
  doi: 10.1063/1.869686
– ident: e_1_2_1_2_2
  doi: 10.1146/annurev.fluid.32.1.93
– ident: e_1_2_1_15_2
  doi: 10.1016/0021-9991(90)90204-E
– ident: e_1_2_1_19_2
  doi: 10.1016/0021-9991(92)90315-P
– volume-title: Matrix Computation for Engineers and Scientists
  year: 1977
  ident: e_1_2_1_6_2
– year: 2003
  ident: e_1_2_1_8_2
  article-title: A Uzawa‐type pressure solver for the Lanczos‐τ‐Chebyshev spectral method
  publication-title: Computers & Fluids
– ident: e_1_2_1_18_2
  doi: 10.1016/0024-3795(80)90169-X
– ident: e_1_2_1_12_2
  doi: 10.1016/S0021-9991(95)90068-3
– ident: e_1_2_1_11_2
  doi: 10.1002/fld.121
– ident: e_1_2_1_3_2
  doi: 10.1016/0021-9991(91)90261-I
SSID ssj0009283
Score 1.9071045
Snippet A novel finite volume method, described in Part I of this paper (Sahin and Owens, Int. J. Numer. Meth. Fluids 2003; 42:57–77), is applied in the linear...
A novel finite volume method, described in Part I of this paper (Sahin and Owens, Int. J. Numer. Meth. Fluids 2003; 42 :57–77), is applied in the linear...
SourceID pascalfrancis
crossref
wiley
istex
SourceType Index Database
Enrichment Source
Publisher
StartPage 79
SubjectTerms Computational methods in fluid dynamics
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
implicit finite volume methods
Laminar flows
Laminar flows in cavities
lid-driven cavity flow
linear stability
Physics
Stability of laminar flows
Title A novel fully-implicit finite volume method applied to the lid-driven cavity problem-Part II: Linear stability analysis
URI https://api.istex.fr/ark:/67375/WNG-F2PF530P-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.533
Volume 42
WOSCitedRecordID wos000182646300004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0363
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009283
  issn: 0271-2091
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NaxsxEB1aO4f20KRpQ920YQ4ht0280q7X6i003SZgjAkNzW3RxwqWGDvYbmgOhfyEHvoL80sy-qgdUwqFnvawklaMZkZPYvY9gH3LMsV5ZhNmjUjIQ3SihCIgVwtpe1aKnvGU-YNiOOxfXorRI6mvwA-xvHBzkeHztQtwqeZHK9JQOzaHhFWeQpuR12YtaJ-clxeDFeMuCxycrEjJFUQa_ph1nY9i17WtqO2s-t2VRso5WccGWYt1yOr3nHLzP2a7BS8i0MTj4Bkv4Uk92YbNCDoxhvR8G54_YiR8BT-OcTK9qcforuVv7-9-Nr7ivFmgbRw6xZDNMAhPo4zDLaZIQBLHjaEuZuYyKGrpZCkwKtbc3_0akZfi2dkHpPMvxRcSLvWVubcoIzPKa7goP335eJpEhYZEc8I9iex1ueVpbbnMc61tt86EVaYgkFhQRqdjt0lVQaBO9rXihjt2PSUtEyrPmGY134HWZDqp3wDm1tg0Ndqkop9xq2SfwEjX9GxqlMzyvAMHvxer0pG-3KlojKtAvMwqMnFFJu4ALhteB8aOP5sc-NVevpezK1fgVuTV1-HnqmSjMufdUXXegb01d1gNmBXu7oxmte9X_W9fqsrBCT3e_luzXXjmawU9Oew7aC1m3-r3sKFvFs18thcd_AEbqAS7
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NbxMxEB1BggQcKBRQU0rxoeptadZeZ2NuFWVpxBJFVSt6s_yxllZESZWEih6Q-hN64Bf2lzBeuwkRQkLitIe1vavxm_GzNX4DsOdophnLXEKdFQkixCRaaCRylVCu55To2UYyv8yHw_75uRjFrEp_FyboQywP3LxnNPHaO7g_kD5YqYa6sX2LZOU-tDMEEW9B--ikOCtXkrs0iHDSPEUsiDRcmfWdD2LXtbWo7c363edGqjmax4W6FuuctVl0io3_-d2n8CRSTXIYsPEM7lWTTdiItJNEp55vwuPfNAmfw49DMpleVmPiB766vb6pm5zzekFc7fkpCfGMhNLTRMXhFlOCVJKMa4td7MzHUGKUL0xBYs2a2-ufI8QpGQzeEdwBo4cRZKZNbu4VUVEb5QWcFR9O3x8nsUZDYhgyn0T1usyxtHJMcW6M61aZcNrmSBNzjOm48bapzpHWqb7RzDKvr6eVo0LzjBpasZfQmkwn1RYQ7qxLU2tsKvoZc1r1kY50bc-lVquM8w7s382WNFHA3NfRGMsgvUwlmliiiTtAlg0vgmbHn032m-levlezrz7FLefyy_CjLOio4Kw7kicd2F3Dw2rALPenZ_hXe820_-1LsiiP8LH9b83ewMPj08-lLAfDT6_gUZM52EjF7kBrMftWvYYH5nJRz2e7Ee2_AJ4NCKs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELagQQgOLRQQoVB8qHpbmrXXu3FvFWEhIopWFRW9WX5KK6KkSkJFD0j9CRz4hf0lHT9IiBASEqc9-LHWeGb8eTT-BqEDRwpFaeEy4gzPQEN0prgCIGe5dKWTvDSBMn9Ujcf983PepKxK_xYm8kOsAm7eMoK_9gZuL4w7WrOGuol5A2DlLuoUjJdglJ3BaX02WlPukkjCSaocdIHn8cmsH3yUhm6cRR0v1m8-N1IuQDwu1rXYxKzh0Kl3_me5j9B2gpr4JOrGY3THTnfRToKdOBn1Yhc9_I2T8An6foKns0s7wT4wf3Vz_aMNOeftErvW41Mc_RmOpaexTNMtZxigJJ60BoaYufehWEtfmAKnmjU31z8b0FM8HB5juAGDhWFApiE39wrLxI3yFJ3V7z69_ZClGg2ZpoB8Mln2qKO5dVQyprXr2YI7ZSqAiRX4dLh4m1xVAOtkXytqqOfXU9IRrlhBNLH0Gdqazqb2OcLMGZfnRpuc9wvqlOwDHOmZ0uVGyYKxLjr8tVtCJwJzX0djIiL1MhEgYgEi7iK86ngROTv-7HIYtnvVLudffIpbxcTn8XtRk6ZmtNeI0y7a39CH9YRF5aNnsKqDsO1_-5OoRwP4vPi3bq_R_WZQi9Fw_HEPPQiJg4Ep9iXaWs6_2lfonr5ctov5flL2WyAfCCY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+fully-implicit+finite+volume+method+applied+to+the+lid-driven+cavity+problem.+Part+II.+Linear+stability+analysis&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=SAHIN%2C+Mehmet&rft.au=OWENS%2C+Robert+G&rft.date=2003-05-10&rft.pub=Wiley&rft.issn=0271-2091&rft.volume=42&rft.issue=1&rft.spage=79&rft.epage=88&rft_id=info:doi/10.1002%2Ffld.533&rft.externalDBID=n%2Fa&rft.externalDocID=14742225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon