A novel fully-implicit finite volume method applied to the lid-driven cavity problem-Part II: Linear stability analysis
A novel finite volume method, described in Part I of this paper (Sahin and Owens, Int. J. Numer. Meth. Fluids 2003; 42:57–77), is applied in the linear stability analysis of a lid‐driven cavity flow in a square enclosure. A combination of Arnoldi's method and extrapolation to zero mesh size all...
Uloženo v:
| Vydáno v: | International journal for numerical methods in fluids Ročník 42; číslo 1; s. 79 - 88 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Chichester, UK
John Wiley & Sons, Ltd
10.05.2003
Wiley |
| Témata: | |
| ISSN: | 0271-2091, 1097-0363 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A novel finite volume method, described in Part I of this paper (Sahin and Owens, Int. J. Numer. Meth. Fluids 2003; 42:57–77), is applied in the linear stability analysis of a lid‐driven cavity flow in a square enclosure. A combination of Arnoldi's method and extrapolation to zero mesh size allows us to determine the first critical Reynolds number at which Hopf bifurcation takes place. The extreme sensitivity of the predicted critical Reynolds number to the accuracy of the method and to the treatment of the singularity points is noted. Results are compared with those in the literature and are in very good agreement. Copyright © 2003 John Wiley & Sons, Ltd. |
|---|---|
| Bibliografie: | ark:/67375/WNG-F2PF530P-R ArticleID:FLD533 Swiss National Science Foundation - No. 21-61865.00 istex:CF23ED302C95DB457126D08607128BB9383EDE59 |
| ISSN: | 0271-2091 1097-0363 |
| DOI: | 10.1002/fld.533 |