How good are learning-based control v.s. model-based control for load shifting? Investigations on a single zone building energy system

Both model predictive control (MPC) and deep reinforcement learning control (DRL) have been presented as a way to approximate the true optimality of a dynamic programming problem, and these two have shown significant operational cost saving potentials for building energy systems. However, there is s...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) Vol. 273; no. C; p. 127073
Main Authors: Fu, Yangyang, Xu, Shichao, Zhu, Qi, O’Neill, Zheng, Adetola, Veronica
Format: Journal Article
Language:English
Published: United Kingdom Elsevier Ltd 01.06.2023
Elsevier
Subjects:
ISSN:0360-5442
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Both model predictive control (MPC) and deep reinforcement learning control (DRL) have been presented as a way to approximate the true optimality of a dynamic programming problem, and these two have shown significant operational cost saving potentials for building energy systems. However, there is still a lack of in-depth quantitative studies on their approximation levels to the true optimality, especially in the building energy domain. To fill in the gap, this paper provides a numerical framework that enables the evaluation of the optimality levels of different controllers for building energy systems. This framework is then used to comprehensively compare the optimal control performance of both MPC and DRL controllers with given computation budgets for a single zone fan coil unit system. Note the optimality is estimated based on a user-specific selection of trade-off weights among energy costs, thermal comfort and control slew rates. Compared with the best optimality we can find through expensive optimization simulations, the best DRL agent can maximally approximate the optimality by 96.54%, which outperforms the best MPC whose optimality level is 90.11%. However, due to the stochasticity, the DRL agent is only expected to approximate the optimality by 90.42%, which is almost equivalent to the best MPC. Except for Proximal Policy Optimization (PPO), all DRL agents can have a better approximation to the optimality than the best MPC, and are expected to have better approximation than the MPC with a prediction horizon of 32 steps (15 min per step). In terms of reducing energy cost and thermal discomfort, MPC can outperform the rule-based control (RBC) by 18.47%–25.44%. DRL can be expected to outperform RBC by 18.95%–25.65% ,and the best DRL control policy can outperform RBC by 20.29%–29.72%. Although the comparison of the optimality level is performed in a perfect setting, e.g., MPC assumes perfect models, and DRL assumes a perfect offline training process and online deployment process, this can shed insight on their capabilities of approximating to the original dynamic programming problem. •Learning- and model-based controllers are evaluated in a containerized environment.•Both controllers can approximate the true optimality by up to 90%–96%.•Most DRL controllers have equivalent performance as the best MPC controller.•DRL controllers can outperform the best MPC controller by up to 6%.
AbstractList Both model predictive control (MPC) and deep reinforcement learning control (DRL) have been presented as a way to approximate the true optimality of a dynamic programming problem, and these two have shown significant operational cost saving potentials for building energy systems. However, there is still a lack of in-depth quantitative studies on their approximation levels to the true optimality, especially in the building energy domain. To fill in the gap, this paper provides a numerical framework that enables the evaluation of the optimality levels of different controllers for building energy systems. This framework is then used to comprehensively compare the optimal control performance of both MPC and DRL controllers with given computation budgets for a single zone fan coil unit system. Note the optimality is estimated based on a user-specific selection of trade-off weights among energy costs, thermal comfort and control slew rates. Compared with the best optimality we can find through expensive optimization simulations, the best DRL agent can maximally approximate the optimality by 96.54%, which outperforms the best MPC whose optimality level is 90.11%. However, due to the stochasticity, the DRL agent is only expected to approximate the optimality by 90.42%, which is almost equivalent to the best MPC. Except for Proximal Policy Optimization (PPO), all DRL agents can have a better approximation to the optimality than the best MPC, and are expected to have better approximation than the MPC with a prediction horizon of 32 steps (15 min per step). In terms of reducing energy cost and thermal discomfort, MPC can outperform the rule-based control (RBC) by 18.47%–25.44%. DRL can be expected to outperform RBC by 18.95%–25.65% ,and the best DRL control policy can outperform RBC by 20.29%–29.72%. Although the comparison of the optimality level is performed in a perfect setting, e.g., MPC assumes perfect models, and DRL assumes a perfect offline training process and online deployment process, this can shed insight on their capabilities of approximating to the original dynamic programming problem.
Both model predictive control (MPC) and deep reinforcement learning control (DRL) have been presented as a way to approximate the true optimality of a dynamic programming problem, and these two have shown significant operational cost saving potentials for building energy systems. However, there is still a lack of in-depth quantitative studies on their approximation levels to the true optimality, especially in the building energy domain. To fill in the gap, this paper provides a numerical framework that enables the evaluation of the optimality levels of different controllers for building energy systems. This framework is then used to comprehensively compare the optimal control performance of both MPC and DRL controllers with given computation budgets for a single zone fan coil unit system. Note the optimality is estimated based on a user-specific selection of trade-off weights among energy costs, thermal comfort and control slew rates. Compared with the best optimality we can find through expensive optimization simulations, the best DRL agent can maximally approximate the optimality by 96.54%, which outperforms the best MPC whose optimality level is 90.11%. However, due to the stochasticity, the DRL agent is only expected to approximate the optimality by 90.42%, which is almost equivalent to the best MPC. Except for Proximal Policy Optimization (PPO), all DRL agents can have a better approximation to the optimality than the best MPC, and are expected to have better approximation than the MPC with a prediction horizon of 32 steps (15 min per step). In terms of reducing energy cost and thermal discomfort, MPC can outperform the rule-based control (RBC) by 18.47%–25.44%. DRL can be expected to outperform RBC by 18.95%–25.65% ,and the best DRL control policy can outperform RBC by 20.29%–29.72%. Although the comparison of the optimality level is performed in a perfect setting, e.g., MPC assumes perfect models, and DRL assumes a perfect offline training process and online deployment process, this can shed insight on their capabilities of approximating to the original dynamic programming problem. •Learning- and model-based controllers are evaluated in a containerized environment.•Both controllers can approximate the true optimality by up to 90%–96%.•Most DRL controllers have equivalent performance as the best MPC controller.•DRL controllers can outperform the best MPC controller by up to 6%.
ArticleNumber 127073
Author Fu, Yangyang
O’Neill, Zheng
Xu, Shichao
Zhu, Qi
Adetola, Veronica
Author_xml – sequence: 1
  givenname: Yangyang
  surname: Fu
  fullname: Fu, Yangyang
  email: yangyang.fu@tamu.edu
  organization: J. Mike Walker’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA
– sequence: 2
  givenname: Shichao
  orcidid: 0000-0002-9026-6245
  surname: Xu
  fullname: Xu, Shichao
  email: shichaoxu2023@u.northwestern.edu
  organization: Department of Computer Science, Northwestern University, IL, USA
– sequence: 3
  givenname: Qi
  orcidid: 0000-0002-7700-4099
  surname: Zhu
  fullname: Zhu, Qi
  email: qzhu@northwestern.edu
  organization: Department of Computer Engineering, Northwestern University, IL, USA
– sequence: 4
  givenname: Zheng
  orcidid: 0000-0002-8839-7174
  surname: O’Neill
  fullname: O’Neill, Zheng
  email: zoneill@tamu.edu
  organization: J. Mike Walker’66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA
– sequence: 5
  givenname: Veronica
  surname: Adetola
  fullname: Adetola, Veronica
  email: veronica.adetola@pnnl.gov
  organization: Pacific Northwest National Laboratory, Richland, WA, USA
BackLink https://www.osti.gov/biblio/1963981$$D View this record in Osti.gov
BookMark eNqFkT9vFDEQxV0Eifz7BimsVDS7jO272zUFCEVAIkWiCbU1a89efPLZwd47dHwAPje-bKoUUFnWvPc0v3ln7CSmSIxdCWgFiNX7TUuR8vrQSpCqFbKDTp2wU1AraJaLhXzLzkrZAMCy1_qU_blNv_g6JccxEw-EOfq4bgYs5LhNccop8H1bWr5NjsKrwZgyDwkdL49-nKrxE7-LeyqTX-PkUyw8RY681Ekg_rtuyoedD67--bwmL4cy0faCvRkxFLp8ec_Zj69fHm5um_vv3-5uPt83VslONT0CaqURO-0QnBJ2KZ3Sg0YNqhNWAonBYW9dtxitllKvOgDRD25QGnqhztn1nJvqjqZYP5F9rDSR7GSEXin9LHo3i55y-rmrNGbri6UQMFLaFaPEUkmo4q5KP8xSm1MpmUZTI5_Rp4w-GAHm2IrZmBnXHFsxcyvVvHhlfsp-i_nwP9vH2Ub1UHtP-chB0ZLz-Yjhkv93wF_ppa4i
CitedBy_id crossref_primary_10_1016_j_gloei_2023_11_002
crossref_primary_10_3390_en16145326
crossref_primary_10_1109_TASE_2025_3551649
crossref_primary_10_1016_j_jobe_2024_111310
crossref_primary_10_1007_s12273_025_1275_1
crossref_primary_10_1016_j_buildenv_2025_113359
crossref_primary_10_1186_s40807_025_00152_4
crossref_primary_10_3390_ma16155321
crossref_primary_10_1016_j_apenergy_2024_125046
crossref_primary_10_1016_j_energy_2025_138517
crossref_primary_10_1016_j_aej_2025_09_017
crossref_primary_10_1016_j_enbuild_2023_113295
crossref_primary_10_1016_j_apenergy_2024_123753
crossref_primary_10_1016_j_enbuild_2023_113770
crossref_primary_10_1016_j_egyr_2025_07_003
crossref_primary_10_1016_j_enbuild_2025_115299
crossref_primary_10_1016_j_apenergy_2023_121785
crossref_primary_10_1016_j_jobe_2025_111909
crossref_primary_10_1016_j_scs_2025_106623
crossref_primary_10_1080_23744731_2024_2444818
crossref_primary_10_1016_j_engappai_2025_110831
Cites_doi 10.1016/j.enbuild.2019.01.018
10.1145/3563357.3564064
10.1145/3486611.3492412
10.1109/TCST.2015.2415411
10.1016/j.buildenv.2015.04.033
10.1016/j.autcon.2022.104128
10.1126/science.aar6404
10.1016/j.apenergy.2021.118346
10.1145/3061639.3062224
10.1016/j.arcontrol.2020.09.001
10.1109/TIA.2019.2932963
10.1109/TSG.2016.2597002
10.1177/0278364917710318
10.1016/j.apenergy.2021.117639
10.1016/j.apenergy.2020.115621
10.1016/j.enbuild.2020.110490
10.1007/s12532-018-0139-4
10.1016/j.apenergy.2013.05.081
10.1080/19401493.2021.1986574
10.1609/aaai.v30i1.10295
10.1109/ACC.2010.5530680
10.1109/MS.2015.62
10.1016/j.ifacol.2017.08.747
10.3384/ecp21181325
10.1016/j.foar.2012.11.001
10.1109/TSG.2016.2628897
10.3166/ejc.11.310-334
10.1016/j.enbuild.2019.07.029
10.1016/S0378-7788(00)00114-6
10.1109/9.704994
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
OTOTI
DOI 10.1016/j.energy.2023.127073
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
ExternalDocumentID 1963981
10_1016_j_energy_2023_127073
S036054422300467X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFPUW
AGQPQ
AHHHB
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
~HD
7S9
L.6
AAIAV
ABYKQ
OTOTI
RIG
ID FETCH-LOGICAL-c3273-8a0a939aa79da0d31c52d39b9a90371c20e1bda8cd74fc9229670018bdb390813
ISSN 0360-5442
IngestDate Mon Apr 01 04:54:15 EDT 2024
Sat Sep 27 22:02:50 EDT 2025
Tue Nov 18 22:43:12 EST 2025
Sat Nov 29 07:19:03 EST 2025
Tue Dec 03 03:44:28 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Model predictive control
Deep reinforcement learning
Building energy and control system
Approximate dynamic programming problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3273-8a0a939aa79da0d31c52d39b9a90371c20e1bda8cd74fc9229670018bdb390813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
EE0009150
ORCID 0000-0002-8839-7174
0000-0002-9026-6245
0000-0002-7700-4099
0000000290266245
0000000277004099
0000000288397174
OpenAccessLink https://www.osti.gov/biblio/1963981
PQID 3153209637
PQPubID 24069
ParticipantIDs osti_scitechconnect_1963981
proquest_miscellaneous_3153209637
crossref_citationtrail_10_1016_j_energy_2023_127073
crossref_primary_10_1016_j_energy_2023_127073
elsevier_sciencedirect_doi_10_1016_j_energy_2023_127073
PublicationCentury 2000
PublicationDate 20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 20230601
  day: 01
PublicationDecade 2020
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle Energy (Oxford)
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Zhang, Chong, Pan, Zhang, Lam (b22) 2019; 199
Bertsekas (b29) 2005; 11
Rao (b47) 2009; 135
Brandi, Fiorentini, Capozzoli (b27) 2022; 135
Fabietti, Gorecki, Qureshi, Bitlislioğlu, Lymperopoulos, Jones (b12) 2016; 9
Fu, Han, Baker, Zuo (b35) 2020; 277
Mnih, Kavukcuoglu, Silver, Graves, Antonoglou, Wierstra, Riedmiller (b18) 2013
Blum, Arroyo, Huang, Drgoňa, Jorissen, Walnum, Chen, Benne, Vrabie, Wetter (b28) 2021; 14
Van Cutsem, Kayal, Blum, Pritoni (b15) 2019
Schreiber, Eschweiler, Baranski, Müller (b21) 2020; 229
Silver, Hubert, Schrittwieser, Antonoglou, Lai, Guez, Lanctot, Sifre, Kumaran, Graepel (b17) 2018; 362
Arroyo, Manna, Spiessens, Helsen (b26) 2022; 309
Levine, Pastor, Krizhevsky, Ibarz, Quillen (b19) 2018; 37
Westphalen, Koszalinski (b3) 1999; 20
Bruno, Giannoccaro, La Scala (b11) 2019; 55
Scokaert, Rawlings (b30) 1998; 43
Bertsekas (b23) 2019
Wetter M, Benne K, Ravache B. Software Architecture and Implementation of Modelica Buildings Library Coupling for Spawn of EnergyPlus. In: Modelica Conferences. 2021, p. 325–34.
Drgoňa, Arroyo, Figueroa, Blum, Arendt, Kim, Ollé, Oravec, Wetter, Vrabie (b7) 2020
Sturzenegger, Gyalistras, Morari, Smith (b14) 2015; 24
Blochwitz, Otter, Arnold, Bausch, Clauß, Elmqvist, Junghanns, Mauss, Monteiro, Neidhold (b33) 2011
Wilcox, Marion (b46) 2008
Fu, Zuo, Wetter, VanGilder, Han, Plamondon (b4) 2019; 186
Fu, Xu, Zhu, O’Neill (b31) 2021
Xu, Fu, Wang, Yang, O’Neill, Wang, Zhu (b39) 2022
(b2) 2022
Görges (b24) 2017; 50
Anderson (b32) 2015; 32
Moritz, Nishihara, Wang, Tumanov, Liaw, Liang, Elibol, Yang, Paul, Jordan, Stoica (b43) 2018
Liaw, Liang, Nishihara, Moritz, Gonzalez, Stoica (b44) 2018
Weng, Chen, Yan, You, Duburcq, Zhang, Su, Zhu (b42) 2021
Nagy, Kazmi, Cheaib, Driesen (b25) 2018
Zhang, Blum, Grahovac, Hu, Granderson, Wetter (b6) 2020
Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1. 2016.
Vrettos, Kara, MacDonald, Andersson, Callaway (b13) 2016; 9
Judkoff, Neymark (b45) 1995
Candanedo, Dehkordi, Stylianou (b10) 2013; 111
Cígler J, Gyalistras D, Široky J, Tiet V, Ferkl L. Beyond theory: the challenge of implementing model predictive control in buildings. In: Proceedings of 11th Rehva World Congress, Clima, vol. 250. 2013.
Fu, O’Neill, Yang, Adetola, Wen, Ren, Wagner, Zhu, Wu (b36) 2021; 303
Andersson, Gillis, Horn, Rawlings, Diehl (b41) 2019; 11
Liang, Quinte, Jia, Sun (b8) 2015; 92
Lu X, Fu Y, Xu S, Zhu Q, O’Neill Z, Yang Z. Comparison Study Of High- performance Rule-based HVAC Control With Deep Reinforcement Learning-based Control In A Multi-zone VAV System. In: International High Performance Buildings Conference. 2022, URL.
Oldewurtel F, Gyalistras D, Gwerder M, Jones C, Parisio A, Stauch V, Lehmann B, Morari M. Increasing energy efficiency in building climate control using weather forecasts and model predictive control. In: Clima-RHEVA World Congress. (CONF). 2010.
Brockman, Cheung, Pettersson, Schneider, Schulman, Tang, Zaremba (b34) 2016
EIA (b1) 2022
Wei T, Wang Y, Zhu Q. Deep reinforcement learning for building HVAC control. In: Proceedings of the 54th Annual DAC 2017. 2017, p. 1–6.
Aghemo, Virgone, Fracastoro, Pellegrino, Blaso, Savoyat, Johannes (b5) 2013; 2
Crawley, Lawrie, Winkelmann, Buhl, Huang, Pedersen, Strand, Liesen, Fisher, Witte (b37) 2001; 33
Zhang (10.1016/j.energy.2023.127073_b6) 2020
Blum (10.1016/j.energy.2023.127073_b28) 2021; 14
Drgoňa (10.1016/j.energy.2023.127073_b7) 2020
10.1016/j.energy.2023.127073_b16
10.1016/j.energy.2023.127073_b38
Candanedo (10.1016/j.energy.2023.127073_b10) 2013; 111
Bruno (10.1016/j.energy.2023.127073_b11) 2019; 55
Van Cutsem (10.1016/j.energy.2023.127073_b15) 2019
Schreiber (10.1016/j.energy.2023.127073_b21) 2020; 229
Sturzenegger (10.1016/j.energy.2023.127073_b14) 2015; 24
Liaw (10.1016/j.energy.2023.127073_b44) 2018
Mnih (10.1016/j.energy.2023.127073_b18) 2013
Brandi (10.1016/j.energy.2023.127073_b27) 2022; 135
(10.1016/j.energy.2023.127073_b2) 2022
Fu (10.1016/j.energy.2023.127073_b36) 2021; 303
Weng (10.1016/j.energy.2023.127073_b42) 2021
Görges (10.1016/j.energy.2023.127073_b24) 2017; 50
Anderson (10.1016/j.energy.2023.127073_b32) 2015; 32
Moritz (10.1016/j.energy.2023.127073_b43) 2018
Scokaert (10.1016/j.energy.2023.127073_b30) 1998; 43
10.1016/j.energy.2023.127073_b40
Judkoff (10.1016/j.energy.2023.127073_b45) 1995
Rao (10.1016/j.energy.2023.127073_b47) 2009; 135
Arroyo (10.1016/j.energy.2023.127073_b26) 2022; 309
Fu (10.1016/j.energy.2023.127073_b4) 2019; 186
Wilcox (10.1016/j.energy.2023.127073_b46) 2008
Liang (10.1016/j.energy.2023.127073_b8) 2015; 92
Levine (10.1016/j.energy.2023.127073_b19) 2018; 37
10.1016/j.energy.2023.127073_b48
10.1016/j.energy.2023.127073_b9
Vrettos (10.1016/j.energy.2023.127073_b13) 2016; 9
Fu (10.1016/j.energy.2023.127073_b31) 2021
Brockman (10.1016/j.energy.2023.127073_b34) 2016
10.1016/j.energy.2023.127073_b20
EIA (10.1016/j.energy.2023.127073_b1) 2022
Westphalen (10.1016/j.energy.2023.127073_b3) 1999; 20
Nagy (10.1016/j.energy.2023.127073_b25) 2018
Aghemo (10.1016/j.energy.2023.127073_b5) 2013; 2
Fabietti (10.1016/j.energy.2023.127073_b12) 2016; 9
Crawley (10.1016/j.energy.2023.127073_b37) 2001; 33
Andersson (10.1016/j.energy.2023.127073_b41) 2019; 11
Bertsekas (10.1016/j.energy.2023.127073_b29) 2005; 11
Bertsekas (10.1016/j.energy.2023.127073_b23) 2019
Fu (10.1016/j.energy.2023.127073_b35) 2020; 277
Silver (10.1016/j.energy.2023.127073_b17) 2018; 362
Xu (10.1016/j.energy.2023.127073_b39) 2022
Zhang (10.1016/j.energy.2023.127073_b22) 2019; 199
Blochwitz (10.1016/j.energy.2023.127073_b33) 2011
References_xml – volume: 32
  start-page: 102
  year: 2015
  end-page: c3
  ident: b32
  article-title: Docker [software engineering]
  publication-title: Ieee Softw.
– volume: 362
  start-page: 1140
  year: 2018
  end-page: 1144
  ident: b17
  article-title: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play
  publication-title: Science
– volume: 55
  start-page: 7052
  year: 2019
  end-page: 7061
  ident: b11
  article-title: A demand response implementation in tertiary buildings through model predictive control
  publication-title: IEEE Trans Ind Appl
– volume: 92
  start-page: 256
  year: 2015
  end-page: 268
  ident: b8
  article-title: MPC control for improving energy efficiency of a building air handler for multi-zone VAVs
  publication-title: Build Environ
– volume: 9
  start-page: 1657
  year: 2016
  end-page: 1666
  ident: b12
  article-title: Experimental implementation of frequency regulation services using commercial buildings
  publication-title: IEEE Trans Smart Grid
– volume: 14
  start-page: 586
  year: 2021
  end-page: 610
  ident: b28
  article-title: Building optimization testing framework (BOPTEST) for simulation-based benchmarking of control strategies in buildings
  publication-title: J. Build. Perform. Simul.
– volume: 229
  year: 2020
  ident: b21
  article-title: Application of two promising reinforcement learning algorithms for load shifting in a cooling supply system
  publication-title: Energy Build
– volume: 24
  start-page: 1
  year: 2015
  end-page: 12
  ident: b14
  article-title: Model predictive climate control of a swiss office building: Implementation, results, and cost–benefit analysis
  publication-title: IEEE Trans Control Syst Technol
– volume: 2
  start-page: 147
  year: 2013
  end-page: 161
  ident: b5
  article-title: Management and monitoring of public buildings through ICT based systems: Control rules for energy saving with lighting and HVAC services
  publication-title: Front. Archit. Res.
– start-page: 276
  year: 2021
  end-page: 280
  ident: b31
  article-title: Containerized framework for building control performance comparisons: Model predictive control vs deep reinforcement learning control
  publication-title: BuildSys 2021 - Proceedings of the 2021 ACM International Conference on Systems for Energy-Efficient Built Environments
– volume: 186
  start-page: 108
  year: 2019
  end-page: 125
  ident: b4
  article-title: Equation-based object-oriented modeling and simulation for data center cooling: A case study
  publication-title: Energy Build
– year: 2018
  ident: b44
  article-title: Tune: A research platform for distributed model selection and training
– reference: Cígler J, Gyalistras D, Široky J, Tiet V, Ferkl L. Beyond theory: the challenge of implementing model predictive control in buildings. In: Proceedings of 11th Rehva World Congress, Clima, vol. 250. 2013.
– year: 2013
  ident: b18
  article-title: Playing atari with deep reinforcement learning
– reference: Wei T, Wang Y, Zhu Q. Deep reinforcement learning for building HVAC control. In: Proceedings of the 54th Annual DAC 2017. 2017, p. 1–6.
– volume: 20
  start-page: 33700
  year: 1999
  end-page: 33745
  ident: b3
  article-title: Energy consumption characteristics of commercial building HVAC systems. Volume II: Thermal distribution, auxiliary equipment, and ventilation
  publication-title: Arthur D. Little Inc (ADLI)
– volume: 277
  year: 2020
  ident: b35
  article-title: Assessments of data centers for provision of frequency regulation
  publication-title: Appl Energy
– year: 2018
  ident: b25
  article-title: Deep reinforcement learning for optimal control of space heating
– volume: 11
  start-page: 1
  year: 2019
  end-page: 36
  ident: b41
  article-title: CasADi: a software framework for nonlinear optimization and optimal control
  publication-title: Math Program Comput
– volume: 309
  year: 2022
  ident: b26
  article-title: Reinforced model predictive control (RL-MPC) for building energy management
  publication-title: Appl Energy
– volume: 11
  start-page: 310
  year: 2005
  end-page: 334
  ident: b29
  article-title: Dynamic programming and suboptimal control: A survey from ADP to MPC
  publication-title: Eur J Control
– volume: 37
  start-page: 421
  year: 2018
  end-page: 436
  ident: b19
  article-title: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection
  publication-title: Int J Robot Res
– year: 1995
  ident: b45
  article-title: International energy agency building energy simulation test (BESTEST) and diagnostic method
– year: 2021
  ident: b42
  article-title: Tianshou: a highly modularized deep reinforcement learning library
– volume: 111
  start-page: 1032
  year: 2013
  end-page: 1045
  ident: b10
  article-title: Model-based predictive control of an ice storage device in a building cooling system
  publication-title: Appl Energy
– start-page: 561
  year: 2018
  end-page: 577
  ident: b43
  article-title: Ray: A distributed framework for emerging AI applications
  publication-title: 13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18)
– year: 2020
  ident: b6
  article-title: Development and Verification of Control Sequences for Single-Zone Variable Air Volume System Based on ASHRAEGuideline 36
– year: 2020
  ident: b7
  article-title: All you need to know about model predictive control for buildings
  publication-title: Annu Rev Control
– volume: 199
  start-page: 472
  year: 2019
  end-page: 490
  ident: b22
  article-title: Whole building energy model for HVAC optimal control: A practical framework based on deep reinforcement learning
  publication-title: Energy Build
– year: 2022
  ident: b1
  article-title: Monthly energy review december 2022
– year: 2008
  ident: b46
  article-title: Users manual for TMY3 data sets
– start-page: 105
  year: 2011
  end-page: 114
  ident: b33
  article-title: The functional mockup interface for tool independent exchange of simulation models
  publication-title: Proceedings of the 8th International Modelica Conference
– volume: 33
  start-page: 319
  year: 2001
  end-page: 331
  ident: b37
  article-title: EnergyPlus: creating a new-generation building energy simulation program
  publication-title: Energy Build
– volume: 303
  year: 2021
  ident: b36
  article-title: Modeling and evaluation of cyber-attacks on grid-interactive efficient buildings
  publication-title: Appl Energy
– volume: 135
  year: 2022
  ident: b27
  article-title: Comparison of online and offline deep reinforcement learning with model predictive control for thermal energy management
  publication-title: Autom Constr
– year: 2016
  ident: b34
  article-title: Openai gym
– reference: Van Hasselt H, Guez A, Silver D. Deep reinforcement learning with double q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1. 2016.
– year: 2022
  ident: b2
  article-title: How much energy is consumed in U.S. buildings?
– year: 2019
  ident: b23
  article-title: Reinforcement Learning and Optimal Control
– volume: 43
  start-page: 1163
  year: 1998
  end-page: 1169
  ident: b30
  article-title: Constrained linear quadratic regulation
  publication-title: IEEE Trans Automat Control
– volume: 135
  start-page: 497
  year: 2009
  end-page: 528
  ident: b47
  article-title: A survey of numerical methods for optimal control
  publication-title: Adv. Astronaut. Sci.
– start-page: 89
  year: 2022
  end-page: 98
  ident: b39
  article-title: Accelerate online reinforcement learning for building HVAC control with heterogeneous expert guidances
  publication-title: Proceedings of the 9th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation
– start-page: 1
  year: 2019
  end-page: 6
  ident: b15
  article-title: Comparison of MPC formulations for building control under commercial time-of-use tariffs
  publication-title: 2019 IEEE Milan PowerTech
– reference: Wetter M, Benne K, Ravache B. Software Architecture and Implementation of Modelica Buildings Library Coupling for Spawn of EnergyPlus. In: Modelica Conferences. 2021, p. 325–34.
– reference: Lu X, Fu Y, Xu S, Zhu Q, O’Neill Z, Yang Z. Comparison Study Of High- performance Rule-based HVAC Control With Deep Reinforcement Learning-based Control In A Multi-zone VAV System. In: International High Performance Buildings Conference. 2022, URL.
– volume: 9
  start-page: 3213
  year: 2016
  end-page: 3223
  ident: b13
  article-title: Experimental demonstration of frequency regulation by commercial buildings—Part I: Modeling and hierarchical control design
  publication-title: IEEE Trans Smart Grid
– reference: Oldewurtel F, Gyalistras D, Gwerder M, Jones C, Parisio A, Stauch V, Lehmann B, Morari M. Increasing energy efficiency in building climate control using weather forecasts and model predictive control. In: Clima-RHEVA World Congress. (CONF). 2010.
– volume: 50
  start-page: 4920
  year: 2017
  end-page: 4928
  ident: b24
  article-title: Relations between model predictive control and reinforcement learning
  publication-title: IFAC-PapersOnLine
– volume: 186
  start-page: 108
  year: 2019
  ident: 10.1016/j.energy.2023.127073_b4
  article-title: Equation-based object-oriented modeling and simulation for data center cooling: A case study
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2019.01.018
– volume: 20
  start-page: 33700
  issue: October
  year: 1999
  ident: 10.1016/j.energy.2023.127073_b3
  article-title: Energy consumption characteristics of commercial building HVAC systems. Volume II: Thermal distribution, auxiliary equipment, and ventilation
  publication-title: Arthur D. Little Inc (ADLI)
– start-page: 89
  year: 2022
  ident: 10.1016/j.energy.2023.127073_b39
  article-title: Accelerate online reinforcement learning for building HVAC control with heterogeneous expert guidances
  doi: 10.1145/3563357.3564064
– start-page: 276
  year: 2021
  ident: 10.1016/j.energy.2023.127073_b31
  article-title: Containerized framework for building control performance comparisons: Model predictive control vs deep reinforcement learning control
  doi: 10.1145/3486611.3492412
– volume: 24
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.energy.2023.127073_b14
  article-title: Model predictive climate control of a swiss office building: Implementation, results, and cost–benefit analysis
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2015.2415411
– volume: 92
  start-page: 256
  year: 2015
  ident: 10.1016/j.energy.2023.127073_b8
  article-title: MPC control for improving energy efficiency of a building air handler for multi-zone VAVs
  publication-title: Build Environ
  doi: 10.1016/j.buildenv.2015.04.033
– start-page: 105
  year: 2011
  ident: 10.1016/j.energy.2023.127073_b33
  article-title: The functional mockup interface for tool independent exchange of simulation models
– volume: 135
  issn: 0926-5805
  year: 2022
  ident: 10.1016/j.energy.2023.127073_b27
  article-title: Comparison of online and offline deep reinforcement learning with model predictive control for thermal energy management
  publication-title: Autom Constr
  doi: 10.1016/j.autcon.2022.104128
– year: 2018
  ident: 10.1016/j.energy.2023.127073_b25
– year: 2018
  ident: 10.1016/j.energy.2023.127073_b44
– year: 2021
  ident: 10.1016/j.energy.2023.127073_b42
– volume: 362
  start-page: 1140
  issue: 6419
  year: 2018
  ident: 10.1016/j.energy.2023.127073_b17
  article-title: A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play
  publication-title: Science
  doi: 10.1126/science.aar6404
– volume: 309
  year: 2022
  ident: 10.1016/j.energy.2023.127073_b26
  article-title: Reinforced model predictive control (RL-MPC) for building energy management
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.118346
– start-page: 561
  year: 2018
  ident: 10.1016/j.energy.2023.127073_b43
  article-title: Ray: A distributed framework for emerging AI applications
– ident: 10.1016/j.energy.2023.127073_b20
  doi: 10.1145/3061639.3062224
– year: 2020
  ident: 10.1016/j.energy.2023.127073_b6
– year: 2020
  ident: 10.1016/j.energy.2023.127073_b7
  article-title: All you need to know about model predictive control for buildings
  publication-title: Annu Rev Control
  doi: 10.1016/j.arcontrol.2020.09.001
– volume: 55
  start-page: 7052
  issue: 6
  year: 2019
  ident: 10.1016/j.energy.2023.127073_b11
  article-title: A demand response implementation in tertiary buildings through model predictive control
  publication-title: IEEE Trans Ind Appl
  doi: 10.1109/TIA.2019.2932963
– volume: 9
  start-page: 1657
  issue: 3
  year: 2016
  ident: 10.1016/j.energy.2023.127073_b12
  article-title: Experimental implementation of frequency regulation services using commercial buildings
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2597002
– volume: 37
  start-page: 421
  issue: 4–5
  year: 2018
  ident: 10.1016/j.energy.2023.127073_b19
  article-title: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection
  publication-title: Int J Robot Res
  doi: 10.1177/0278364917710318
– year: 2019
  ident: 10.1016/j.energy.2023.127073_b23
– volume: 303
  issn: 03062619
  year: 2021
  ident: 10.1016/j.energy.2023.127073_b36
  article-title: Modeling and evaluation of cyber-attacks on grid-interactive efficient buildings
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117639
– volume: 277
  issn: 03062619
  year: 2020
  ident: 10.1016/j.energy.2023.127073_b35
  article-title: Assessments of data centers for provision of frequency regulation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115621
– volume: 229
  year: 2020
  ident: 10.1016/j.energy.2023.127073_b21
  article-title: Application of two promising reinforcement learning algorithms for load shifting in a cooling supply system
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2020.110490
– volume: 11
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.energy.2023.127073_b41
  article-title: CasADi: a software framework for nonlinear optimization and optimal control
  publication-title: Math Program Comput
  doi: 10.1007/s12532-018-0139-4
– volume: 111
  start-page: 1032
  year: 2013
  ident: 10.1016/j.energy.2023.127073_b10
  article-title: Model-based predictive control of an ice storage device in a building cooling system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.05.081
– volume: 14
  start-page: 586
  issue: 5
  year: 2021
  ident: 10.1016/j.energy.2023.127073_b28
  article-title: Building optimization testing framework (BOPTEST) for simulation-based benchmarking of control strategies in buildings
  publication-title: J. Build. Perform. Simul.
  doi: 10.1080/19401493.2021.1986574
– volume: 135
  start-page: 497
  issue: 1
  year: 2009
  ident: 10.1016/j.energy.2023.127073_b47
  article-title: A survey of numerical methods for optimal control
  publication-title: Adv. Astronaut. Sci.
– ident: 10.1016/j.energy.2023.127073_b48
  doi: 10.1609/aaai.v30i1.10295
– start-page: 1
  year: 2019
  ident: 10.1016/j.energy.2023.127073_b15
  article-title: Comparison of MPC formulations for building control under commercial time-of-use tariffs
– year: 2022
  ident: 10.1016/j.energy.2023.127073_b1
– year: 2008
  ident: 10.1016/j.energy.2023.127073_b46
– ident: 10.1016/j.energy.2023.127073_b9
  doi: 10.1109/ACC.2010.5530680
– year: 2013
  ident: 10.1016/j.energy.2023.127073_b18
– volume: 32
  start-page: 102
  issue: 3
  year: 2015
  ident: 10.1016/j.energy.2023.127073_b32
  article-title: Docker [software engineering]
  publication-title: Ieee Softw.
  doi: 10.1109/MS.2015.62
– ident: 10.1016/j.energy.2023.127073_b40
– volume: 50
  start-page: 4920
  issue: 1
  year: 2017
  ident: 10.1016/j.energy.2023.127073_b24
  article-title: Relations between model predictive control and reinforcement learning
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2017.08.747
– ident: 10.1016/j.energy.2023.127073_b38
  doi: 10.3384/ecp21181325
– volume: 2
  start-page: 147
  issue: 2
  year: 2013
  ident: 10.1016/j.energy.2023.127073_b5
  article-title: Management and monitoring of public buildings through ICT based systems: Control rules for energy saving with lighting and HVAC services
  publication-title: Front. Archit. Res.
  doi: 10.1016/j.foar.2012.11.001
– volume: 9
  start-page: 3213
  issue: 4
  year: 2016
  ident: 10.1016/j.energy.2023.127073_b13
  article-title: Experimental demonstration of frequency regulation by commercial buildings—Part I: Modeling and hierarchical control design
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2628897
– volume: 11
  start-page: 310
  issue: 4–5
  year: 2005
  ident: 10.1016/j.energy.2023.127073_b29
  article-title: Dynamic programming and suboptimal control: A survey from ADP to MPC
  publication-title: Eur J Control
  doi: 10.3166/ejc.11.310-334
– year: 1995
  ident: 10.1016/j.energy.2023.127073_b45
– year: 2016
  ident: 10.1016/j.energy.2023.127073_b34
– year: 2022
  ident: 10.1016/j.energy.2023.127073_b2
– volume: 199
  start-page: 472
  year: 2019
  ident: 10.1016/j.energy.2023.127073_b22
  article-title: Whole building energy model for HVAC optimal control: A practical framework based on deep reinforcement learning
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2019.07.029
– volume: 33
  start-page: 319
  issue: 4
  year: 2001
  ident: 10.1016/j.energy.2023.127073_b37
  article-title: EnergyPlus: creating a new-generation building energy simulation program
  publication-title: Energy Build
  doi: 10.1016/S0378-7788(00)00114-6
– ident: 10.1016/j.energy.2023.127073_b16
– volume: 43
  start-page: 1163
  issue: 8
  year: 1998
  ident: 10.1016/j.energy.2023.127073_b30
  article-title: Constrained linear quadratic regulation
  publication-title: IEEE Trans Automat Control
  doi: 10.1109/9.704994
SSID ssj0005899
Score 2.5292323
Snippet Both model predictive control (MPC) and deep reinforcement learning control (DRL) have been presented as a way to approximate the true optimality of a dynamic...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 127073
SubjectTerms Approximate dynamic programming problem
Building energy and control system
Deep reinforcement learning
energy
energy costs
issues and policy
Model predictive control
operating costs
Title How good are learning-based control v.s. model-based control for load shifting? Investigations on a single zone building energy system
URI https://dx.doi.org/10.1016/j.energy.2023.127073
https://www.proquest.com/docview/3153209637
https://www.osti.gov/biblio/1963981
Volume 273
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0360-5442
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0005899
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELZKhwQvCAbTygAZibcoUROnTfyEJtQKeJhADKniJXJsp-1UJdOyVoUfwB_hj3IXO0mzCsYeeIkqx3ac3hff5fLdHSFvfKmyOOPS5WM9dsOUcVeE8LiDZRHIIB2PUqmqYhPR2Vk8m_FPvd6vOhZms4ryPN5u-eV_FTW0gbAxdPYO4m4mhQb4DUKHI4gdjv8keCwSN8dcxcjpskUh5i5qK9UQ0zde6ZkiODdOIOlwVQjllItlZoKhp7u5OCrWXO4IB10MK-38KMBITW1pbUebQEKTHbrj8zcnMLXp1rDpG__DdF1pAZHPvwurRaF1VrV-WSCpv2id21Xr52XL1LFUDY6-7MqZ_W2h7SzWlRGwlnLVhHABSsKwsz0HEdvZYPFDuWnY2_uNG-LCM_fq4QW8tns31fYNFdgQE2vO20ViZklwlsTMco8cBNGIw9Z5cPphMvvYMoniqkxps_o6QrOiEe6v5k8WUL8AUe6ZBJWdc_6YPLIvKPTUAOsJ6en8kDyo49fLQ3I0aWMjoaNVDuVT8hOQRxF5FJBHu8ijFmAUkUd3kNecAFhQRB6tkfeWdnFHi5wKanBHEXe0xh01d08N7p6Rr9PJ-bv3ri3z4UoGwnVjMRSccSEirsRQMV-OAsV4ygXHfJIyGGo_VSKWKgozyYOAY2iZH6cKdhawaNkR6edw1WNCs5ipWHAteKhC7SswtYJQZ0MFO1Em9XhAWP3XJ9LmwMdSLKvkb4IfELcZdWlywNzSP6qlmlg71tinCUD1lpEnCAIchSmcJXLdYBhqSR77A_K6xkYCSgC_7IlcF-syYT7Wd4Fe0fM7rvWEPGyfxBekf3211i_Jfbm5XpZXryzSfwNwCdf5
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+good+are+learning-based+control+v.s.+model-based+control+for+load+shifting%3F+Investigations+on+a+single+zone+building+energy+system&rft.jtitle=Energy+%28Oxford%29&rft.au=Fu%2C+Yangyang&rft.au=Xu%2C+Shichao&rft.au=Zhu%2C+Qi&rft.au=O%E2%80%99Neill%2C+Zheng&rft.date=2023-06-01&rft.issn=0360-5442&rft.volume=273&rft.spage=127073&rft_id=info:doi/10.1016%2Fj.energy.2023.127073&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_energy_2023_127073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-5442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-5442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-5442&client=summon