Heart disease prediction using machine learning algorithms

Day by day the cases of heart diseases are increasing at a rapid rate and it's very Important and concerning to predict any such diseases beforehand. This diagnosis is a difficult task i.e. it should be performed precisely and efficiently. The research paper mainly focuses on which patient is m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering Jg. 1022; H. 1; S. 12072 - 12081
Hauptverfasser: Jindal, Harshit, Agrawal, Sarthak, Khera, Rishabh, Jain, Rachna, Nagrath, Preeti
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bristol IOP Publishing 01.01.2021
Schlagworte:
ISSN:1757-8981, 1757-899X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Day by day the cases of heart diseases are increasing at a rapid rate and it's very Important and concerning to predict any such diseases beforehand. This diagnosis is a difficult task i.e. it should be performed precisely and efficiently. The research paper mainly focuses on which patient is more likely to have a heart disease based on various medical attributes. We prepared a heart disease prediction system to predict whether the patient is likely to be diagnosed with a heart disease or not using the medical history of the patient. We used different algorithms of machine learning such as logistic regression and KNN to predict and classify the patient with heart disease. A quite Helpful approach was used to regulate how the model can be used to improve the accuracy of prediction of Heart Attack in any individual. The strength of the proposed model was quiet satisfying and was able to predict evidence of having a heart disease in a particular individual by using KNN and Logistic Regression which showed a good accuracy in comparison to the previously used classifier such as naive bayes etc. So a quiet significant amount of pressure has been lift off by using the given model in finding the probability of the classifier to correctly and accurately identify the heart disease. The Given heart disease prediction system enhances medical care and reduces the cost. This project gives us significant knowledge that can help us predict the patients with heart disease It is implemented on the.pynb format.
AbstractList Day by day the cases of heart diseases are increasing at a rapid rate and it's very Important and concerning to predict any such diseases beforehand. This diagnosis is a difficult task i.e. it should be performed precisely and efficiently. The research paper mainly focuses on which patient is more likely to have a heart disease based on various medical attributes. We prepared a heart disease prediction system to predict whether the patient is likely to be diagnosed with a heart disease or not using the medical history of the patient. We used different algorithms of machine learning such as logistic regression and KNN to predict and classify the patient with heart disease. A quite Helpful approach was used to regulate how the model can be used to improve the accuracy of prediction of Heart Attack in any individual. The strength of the proposed model was quiet satisfying and was able to predict evidence of having a heart disease in a particular individual by using KNN and Logistic Regression which showed a good accuracy in comparison to the previously used classifier such as naive bayes etc. So a quiet significant amount of pressure has been lift off by using the given model in finding the probability of the classifier to correctly and accurately identify the heart disease. The Given heart disease prediction system enhances medical care and reduces the cost. This project gives us significant knowledge that can help us predict the patients with heart disease It is implemented on the.pynb format.
Author Jindal, Harshit
Khera, Rishabh
Jain, Rachna
Agrawal, Sarthak
Nagrath, Preeti
Author_xml – sequence: 1
  givenname: Harshit
  surname: Jindal
  fullname: Jindal, Harshit
  email: harshit.jindal50@gmail.com
  organization: Student, Dept. Of Electronics And Communication Eng. Bharti Vidyapeeth's College Of Engineering
– sequence: 2
  givenname: Sarthak
  surname: Agrawal
  fullname: Agrawal, Sarthak
  organization: Student, Dept. Of Electronics And Communication Eng. Bharti Vidyapeeth's College Of Engineering
– sequence: 3
  givenname: Rishabh
  surname: Khera
  fullname: Khera, Rishabh
  organization: Student, Dept. Of Electronics And Communication Eng. Bharti Vidyapeeth's College Of Engineering
– sequence: 4
  givenname: Rachna
  surname: Jain
  fullname: Jain, Rachna
  organization: Faculty, Dept. Of Computer Science & Engineering Bharti Vidyapeeth's College Of Engineering
– sequence: 5
  givenname: Preeti
  surname: Nagrath
  fullname: Nagrath, Preeti
  organization: Faculty, Dept. Of Computer Science & Engineering Bharti Vidyapeeth's College Of Engineering
BookMark eNqNkEFLwzAUx4NMcJt-BguePNTmJWmTCh5kTCcoHlTwFrI02TK6tibdwW9vS2WiCHrKI-__e-_xm6BRVVcGoVPAF4CFSICnPBZ5_poAJiSBBAPBnByg8b4z2tcCjtAkhA3GGWcMj9HlwijfRoULRgUTNd4UTreurqJdcNUq2iq9dpWJyi5W9R-qXNXetettOEaHVpXBnHy-U_RyM3-eLeL7x9u72fV9rCnhJLZpxlJlIQNhIAVBNNMqV1oUlhWcYZOLjIol1UtCwSqs2JLmoJQoVMq1pXSKzoa5ja_fdia0clPvfNWtlCTDAJgxkXYpPqS0r0PwxsrGu63y7xKw7EXJXoHsdchelAQ5iOrIqx-kdq3qHbReufIfPB14Vzdfp_1Nnf9CPTzNv-dkU1j6AYlAjI0
CitedBy_id crossref_primary_10_1177_14604582251366160
crossref_primary_10_1007_s11664_024_11092_y
crossref_primary_10_1038_s41598_025_13790_x
crossref_primary_10_1038_s41598_025_12030_6
crossref_primary_10_1109_ACCESS_2025_3555495
crossref_primary_10_3390_electronics13203996
crossref_primary_10_4108_eetpht_9_4052
crossref_primary_10_1038_s41598_025_09423_y
crossref_primary_10_1155_2024_5080332
crossref_primary_10_1155_2022_3730303
crossref_primary_10_1007_s10462_023_10493_5
crossref_primary_10_1007_s11042_022_14020_6
crossref_primary_10_32604_cmc_2025_061645
crossref_primary_10_1038_s41598_024_69071_6
crossref_primary_10_1080_10255842_2023_2185477
crossref_primary_10_1007_s11831_025_10367_9
crossref_primary_10_1016_j_compbiomed_2024_108432
crossref_primary_10_1007_s42044_025_00262_8
crossref_primary_10_1007_s41870_022_00868_2
crossref_primary_10_1002_ehf2_14942
crossref_primary_10_1016_j_procs_2025_04_149
crossref_primary_10_1007_s00521_022_07241_1
crossref_primary_10_1142_S0219649225500285
crossref_primary_10_54105_ijpmh_A4545_05040525
crossref_primary_10_1051_e3sconf_202449103013
crossref_primary_10_1016_j_neuri_2025_100193
crossref_primary_10_21015_vtse_v10i3_1106
crossref_primary_10_1038_s41598_025_90530_1
crossref_primary_10_2478_ijssis_2025_0021
crossref_primary_10_1007_s11042_025_20974_0
crossref_primary_10_1007_s11831_024_10194_4
crossref_primary_10_1109_ACCESS_2023_3312046
crossref_primary_10_12688_f1000research_123776_1
crossref_primary_10_1186_s12872_024_03883_2
crossref_primary_10_1007_s11042_023_17051_9
crossref_primary_10_1051_itmconf_20257401005
crossref_primary_10_1016_j_ijcard_2024_132506
crossref_primary_10_3390_info16050334
crossref_primary_10_1038_s41598_025_96715_y
crossref_primary_10_5937_JEMC2501057K
crossref_primary_10_1016_j_engappai_2024_109968
crossref_primary_10_3390_a17010034
crossref_primary_10_1007_s10115_024_02229_w
crossref_primary_10_1007_s42979_025_04325_2
crossref_primary_10_1088_1742_6596_2286_1_012024
crossref_primary_10_33317_ssurj_649
crossref_primary_10_1007_s42044_023_00148_7
crossref_primary_10_1016_j_engappai_2025_110138
crossref_primary_10_4018_IJDWM_333862
crossref_primary_10_24017_science_2023_2_5
Cites_doi 10.5120/7228-0076
10.1161/ATVBAHA.113.301218
10.3906/elk-1611-235
10.1136/bmj.315.7101.159
10.1109/MAP.2016.2594004
10.1109/TITB.2006.864475
10.1093/ije/18.2.361
10.5120/2237-2860
10.1136/bmjopen-2014-005025
10.1186/1468-6708-3-10
10.1016/j.ins.2017.06.027
ContentType Journal Article
Copyright Published under licence by IOP Publishing Ltd
2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: Published under licence by IOP Publishing Ltd
– notice: 2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
KB.
L6V
M7S
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.1088/1757-899X/1022/1/012072
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Engineering Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Journals Open Access
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: KB.
  name: Materials Science Database
  url: http://search.proquest.com/materialsscijournals
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Heart disease prediction using machine learning algorithms
EISSN 1757-899X
ExternalDocumentID 10_1088_1757_899X_1022_1_012072
MSE_1022_1_012072
GroupedDBID 1JI
5B3
5PX
5VS
AAJIO
AAJKP
ABHWH
ABJCF
ACAFW
ACGFO
ACHIP
ACIPV
AEFHF
AEJGL
AFKRA
AFYNE
AHSEE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BENPR
BGLVJ
CCPQU
CEBXE
CJUJL
CRLBU
EBS
EDWGO
EQZZN
GROUPED_DOAJ
GX1
HCIFZ
HH5
IJHAN
IOP
IZVLO
KB.
KNG
KQ8
M7S
N5L
O3W
OK1
P2P
PDBOC
PIMPY
PJBAE
PTHSS
RIN
RNS
SY9
T37
TR2
TSCCA
W28
AAYXX
AEINN
AFFHD
CITATION
PHGZM
PHGZT
PQGLB
8FE
8FG
ABUWG
AZQEC
D1I
DWQXO
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3272-f5645af1618e15182c4ca9ac8df4d740e98638b3cb231fa0a4b391aa8da57cf33
IEDL.DBID O3W
ISSN 1757-8981
IngestDate Wed Aug 13 09:10:36 EDT 2025
Sat Nov 29 03:24:46 EST 2025
Tue Nov 18 20:50:29 EST 2025
Wed Aug 21 03:34:06 EDT 2024
Wed Feb 24 05:40:50 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3272-f5645af1618e15182c4ca9ac8df4d740e98638b3cb231fa0a4b391aa8da57cf33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://iopscience.iop.org/article/10.1088/1757-899X/1022/1/012072
PQID 2601104485
PQPubID 4998670
PageCount 10
ParticipantIDs iop_journals_10_1088_1757_899X_1022_1_012072
crossref_citationtrail_10_1088_1757_899X_1022_1_012072
crossref_primary_10_1088_1757_899X_1022_1_012072
proquest_journals_2601104485
PublicationCentury 2000
PublicationDate 20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 20210101
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle IOP conference series. Materials Science and Engineering
PublicationTitleAlternate IOP Conf. Ser.: Mater. Sci. Eng
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Kiyasu (MSE_1022_1_012072bib24) 1982; 396
Jee (MSE_1022_1_012072bib6) 2014; 4
Raihan (MSE_1022_1_012072bib16)
Piller (MSE_1022_1_012072bib22) 2002; 3
Folsom (MSE_1022_1_012072bib23) 1989; 18
Parthiban (MSE_1022_1_012072bib12) 2008; 3
Shinde (MSE_1022_1_012072bib4) 2015; 6
Ganna (MSE_1022_1_012072bib7) 2013; 33
Wolgast (MSE_1022_1_012072bib13) 2016; 58
Worthen (MSE_1022_1_012072bib19) 2002; 124
Ordonez (MSE_1022_1_012072bib3) 2006; 10
Dangare Chaitrali (MSE_1022_1_012072bib9) 2012; 47
Brown (MSE_1022_1_012072bib21) 1997; 315
Dangare (MSE_1022_1_012072bib2) 2012; 47
Jabbar (MSE_1022_1_012072bib8)
Chen (MSE_1022_1_012072bib11)
Soni (MSE_1022_1_012072bib1) 2011; 17
Acharya (MSE_1022_1_012072bib20) 2017; 415
Takci (MSE_1022_1_012072bib18) 2018; 26
Patel (MSE_1022_1_012072bib14) 2014; 4
Buechler (MSE_1022_1_012072bib17) 1999; 124
Bashir (MSE_1022_1_012072bib5)
Zhang (MSE_1022_1_012072bib15) 2011
Jyoti (MSE_1022_1_012072bib10) 2011; 17
References_xml – volume: 4
  start-page: 1
  year: 2014
  ident: MSE_1022_1_012072bib14
  article-title: Heart attack detection and medical attention using motion sensing device -kinect
  publication-title: International Journal of Scientific and Research Publications
– volume: 47
  start-page: 44
  year: 2012
  ident: MSE_1022_1_012072bib2
  article-title: Improved study of heart disease prediction system using data mining classification techniques
  publication-title: International Journal of Computer Applications
  doi: 10.5120/7228-0076
– volume: 33
  start-page: 2267
  year: 2013
  ident: MSE_1022_1_012072bib7
  article-title: Multilocus genetic risk scores for coronary heart disease prediction
  publication-title: Arteriosclerosis, thrombosis, and vascular biology
  doi: 10.1161/ATVBAHA.113.301218
– start-page: 299
  ident: MSE_1022_1_012072bib16
  article-title: Smartphone based ischemic heart disease (heart attack) risk prediction using clinical data and data mining approaches, a prototype design
– volume: 26
  start-page: 1
  year: 2018
  ident: MSE_1022_1_012072bib18
  article-title: Improvement of heart attack prediction by the feature selection methods
  publication-title: Turkish Journal of Electrical Engineering & Computer Sciences
  doi: 10.3906/elk-1611-235
– volume: 315
  start-page: 159
  year: 1997
  ident: MSE_1022_1_012072bib21
  article-title: Inpatient deaths from acute myocardial infarction, 1982-92: analysis of data in the Nottingham heart attack register
  publication-title: BMJ
  doi: 10.1136/bmj.315.7101.159
– start-page: 40
  ident: MSE_1022_1_012072bib8
  article-title: Heart disease prediction using lazy associative classification
– volume: 396
  year: 1982
  ident: MSE_1022_1_012072bib24
– volume: 3
  year: 2008
  ident: MSE_1022_1_012072bib12
  article-title: Intelligent heart disease prediction system using CANFIS and genetic algorithm
  publication-title: International Journal of Biological, Biomedical and Medical Sciences
– volume: 58
  start-page: 84
  year: 2016
  ident: MSE_1022_1_012072bib13
  article-title: Wireless body area network for heart attack detection [Education Corner]
  publication-title: IEEE antennas and propagation magazine
  doi: 10.1109/MAP.2016.2594004
– volume: 124
  year: 2002
  ident: MSE_1022_1_012072bib19
– volume: 10
  start-page: 334
  year: 2006
  ident: MSE_1022_1_012072bib3
  article-title: Association rule discovery with the train and test approach for heart disease prediction
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2006.864475
– volume: 18
  start-page: 361
  year: 1989
  ident: MSE_1022_1_012072bib23
  article-title: Body fat distribution and self-reported prevalence of hypertension, heart attack, and other heart disease in older women
  publication-title: International journal of epidemiology
  doi: 10.1093/ije/18.2.361
– volume: 17
  start-page: 43
  year: 2011
  ident: MSE_1022_1_012072bib1
  article-title: Predictive data mining for medical diagnosis: an overview of heart disease prediction
  publication-title: International Journal of Computer Applications
  doi: 10.5120/2237-2860
– volume: 4
  year: 2014
  ident: MSE_1022_1_012072bib6
  article-title: A coronary heart disease prediction model: the Korean Heart Study
  publication-title: BMJ open
  doi: 10.1136/bmjopen-2014-005025
– volume: 3
  start-page: 10
  year: 2002
  ident: MSE_1022_1_012072bib22
  article-title: Validation of heart failure events in the Antihypertensive and Lipid Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) participants assigned to doxazosin and chlorthalidone
  publication-title: Current controlled trials in cardiovascular medicine
  doi: 10.1186/1468-6708-3-10
– year: 2011
  ident: MSE_1022_1_012072bib15
– start-page: 557
  ident: MSE_1022_1_012072bib11
  article-title: HDPS: Heart disease prediction system
– volume: 17
  start-page: 43
  year: 2011
  ident: MSE_1022_1_012072bib10
  article-title: Predictive data mining for medical diagnosis: An overview of heart disease prediction
  publication-title: International Journal of Computer Applications
  doi: 10.5120/2237-2860
– start-page: 259
  ident: MSE_1022_1_012072bib5
  article-title: An ensemble-based decision support framework for intelligent heart disease diagnosis
– volume: 124
  year: 1999
  ident: MSE_1022_1_012072bib17
– volume: 6
  start-page: 637
  year: 2015
  ident: MSE_1022_1_012072bib4
  article-title: An intelligent heart disease prediction system using k-means clustering and Naïve Bayes algorithm
  publication-title: International Journal of Computer Science and Information Technologies
– volume: 47
  start-page: 44
  year: 2012
  ident: MSE_1022_1_012072bib9
  article-title: Improved study of heart disease prediction system using data mining classification techniques
  publication-title: International Journal of Computer Applications
  doi: 10.5120/7228-0076
– volume: 415
  start-page: 190
  year: 2017
  ident: MSE_1022_1_012072bib20
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2017.06.027
SSID ssj0067440
Score 2.6132565
Snippet Day by day the cases of heart diseases are increasing at a rapid rate and it's very Important and concerning to predict any such diseases beforehand. This...
Day by day the cases of heart diseases are increasing at a rapid rate and it’s very Important and concerning to predict any such diseases beforehand. This...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12072
SubjectTerms Algorithms
Cardiovascular disease
Classifiers
Health services
Heart
Heart diseases
Machine learning
Scientific papers
Statistical analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLbYxgEOvBGDgSrEkarra025IECbdmGaeEi7RWkeY9IeZS38fuIuZUxI7MC1dZSqn2PHsfMZ4EpxqSSJiU10dGEHrvLsJPSVjVTtIZOceb4omk1EvR4ZDOK-OXDLTFllaRMLQy1mHM_IHaS-0qFDQMLb9N3GrlGYXTUtNCpQQ6ayoAq1-3av_1Ta4hbS3xVXIkNti2PilhVeOuwzz-KBg0GP4zp4jTTyVvxTZTRLfxnpwvN0dv_7zXuwY_ac1t1CSfZhQ04PYPsHE-Eh3HS1xueWSddY6RzzN4iZhYXxQ2tS1FxKyzSZGFpsPNQz5W-T7AheO-2Xh65t2irY3Pciz1ZIIMMUMuVL7e-JxwPOYsaJUIGIgqaMiV6Uic8TvfdTrMmCxI9dxohgYcSV7x9DdTqbyhOwhNTbDxIlXHCk9ktYGEQq9FgoVES0c6xDq_yZlBvOcWx9MaZF7psQiihQRIEiCtSlCxTq0PwemC5oN9YPudZoUbMEs_Xilyvij8_tVQGaClWHRgnsUnKJ6unfr89gy8MKmOLApgHVfP4hz2GTf-ajbH5hVPULI-DpcQ
  priority: 102
  providerName: ProQuest
Title Heart disease prediction using machine learning algorithms
URI https://iopscience.iop.org/article/10.1088/1757-899X/1022/1/012072
https://www.proquest.com/docview/2601104485
Volume 1022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Journals Open Access
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: O3W
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: M7S
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Materials Science Database
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: KB.
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/materialsscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: BENPR
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1757-899X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067440
  issn: 1757-8981
  databaseCode: PIMPY
  dateStart: 20090201
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT8IwEL8o-KAPfhtRJIvx0QFbN9b5JgaCMSARjfjUdF2LJHxloH-_vX2oxBhi4tuS3W3N9Xp37V1_B3ChhFSS-tSkendhOpayzcAlykSodpdLwW0Sxs0mvE6H9vv-0l2Y6Sw1_WX9mAAFJyJMC-JoRTs8bVh9v1_B3UrFquD9T0-b4Tyhbg11_Z48Z9a4hgB48aXImIlaWY3X7x9a8lDrehQ_zHTse5o7_zHqXdhOI0_jOuHYgzU52Yetb3iEB3DV0nq_MNKkjTGLMIuDM2dgefzAGMeVl9JIW00MDD4aTKPh4nU8P4SnZuPxpmWmzRVMQWzPNhXCyHCFePlSe31qC0dwnwsaKif0nKr0qV6aARGBjgAVr3InIL7FOQ256wlFyBHkJtOJPAYjlDoIoV4gQoEAfwF3HU-5NndD5VHtIgtQywTKRIo8jg0wRizOgFPKUDgMhcNQOMxiiXAKUP1knCXgG6tZLvUMsHQhzleTny-Rt3uNZQI2C1UBitn8f1EiFJveyjrUPfnbL09h08a6mPgYpwi5RfQmz2BDvC-G86gE-Xqj030owfpdvVzCStReKVZo_aZ72-6-fAA3QOr9
linkProvider IOP Publishing
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dT9swED-VggQ8MGAgCt2w0Hhb1MZJGgcJoWkDtYJWlcak7sk4_iiV-hHasol_ir8RX5qsVJPgiQdek7Pk5H6-8_nOvwP4YqQ2mkXMYTa6cHzXUCcOPOMgVXsgtBTUU2mzibDVYp1O1C7AY34XBssqc5uYGmo1knhGXkHqKxs6-Cw4S-4c7BqF2dW8hcYMFpf64a8N2SanjR9Wv8eUXpxff687WVcBR3o0pI5B_hRhkCheW3fHqPSliIRkyvgq9Ks6YhaTsSdju_Uxoir82ItcIZgSQSgNHoBak7_sW7CzIiy3G83279z215BuL72CGVjbHzE3ryizYWb2LOpUMMiquBW8thrSBX-41Bsl_zmF1NNdfHhv_2gTNrI9Nfk2WwRbUNDDbVh_xrT4EU7qdlpTkqWjSDLG_BRikmDhf5cM0ppSTbImGl0i-l37ZdPbwWQHfr3J5HehOBwN9R4Qpe32ioWxVBKpC2MR-KEJqAiUCZl1_iWo5crjMuNUx9YefZ7m9hnjqHWOWueode7ymdZLUP03MJnRirw-5KtFB89MzOR18aMF8ebP80UBnihTgnIOpLnkHEX7L78-hNX6dfOKXzValwewRrHaJz2cKkNxOr7Xn2BF_pn2JuPP2TIhcPPWqHsCzxxGkQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwED-2KaIPfovTqUV8tHZtmjX1TXRjos6BinsLaZrMwb7Ypn-_ubabDpEh-NaHuzb87nKXNJffAZxpqbRiIbOZ2V3Yvqs9O6JE20jVToWSwiNx0mwiaDRYqxU2c1Cb3YUZDLPQf2EeU6LgFMKsII45JuGZwBqGLQd3K47r4P3PwHOGsc7DEiWUYAuHR_I6jcgVJMFLLkYmisyd1nn9_rK5LJU3I_kRqpP8U9v4r5Fvwnq2ArWuUq0tyKn-Nqx94yXcgcu68f-JlR3eWMMRnuagBS0sk29bvaQCU1lZy4m2JbrtwagzeeuNd-GlVn2-rttZkwVbEi_wbI10MkIjb74y2Z950pciFJLF2o8Dv6xCZqZoRGRkVoJalIUfkdAVgsWCBlITsgeF_qCv9sGKlVmMsCCSsUSiv0hQP9DUEzTWATOpsgiVKahcZgzk2Aijy5OTcMY4AsQRII4AcZenABWhPFMcpiQci1XOjRV4NiHHi8VP58QfnqrzAtzYqAilqQ98SSIlm9nS-owe_O2TJ7DSvKnx-9vG3SGselgqk_zZKUFhMnpXR7AsPyad8eg48eVPc0zrPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heart+disease+prediction+using+machine+learning+algorithms&rft.jtitle=IOP+conference+series.+Materials+Science+and+Engineering&rft.au=Jindal%2C+Harshit&rft.au=Agrawal%2C+Sarthak&rft.au=Khera%2C+Rishabh&rft.au=Jain%2C+Rachna&rft.date=2021-01-01&rft.issn=1757-8981&rft.eissn=1757-899X&rft.volume=1022&rft.issue=1&rft.spage=12072&rft_id=info:doi/10.1088%2F1757-899X%2F1022%2F1%2F012072&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1757_899X_1022_1_012072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-8981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-8981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-8981&client=summon