Numerical simulation of martensitic phase transitions in shape memory alloys using an improved integration algorithm

The numerical simulation of structures made of shape memory materials is of increasing interest in different fields. Among others, the computation of pipe connectors or medical devices like endoscopic instruments and stents is a challenge. In such practical applications the pseudoelastic effect as w...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering Vol. 69; no. 10; pp. 1997 - 2035
Main Author: Helm, D.
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 05.03.2007
Wiley
Subjects:
ISSN:0029-5981, 1097-0207
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The numerical simulation of structures made of shape memory materials is of increasing interest in different fields. Among others, the computation of pipe connectors or medical devices like endoscopic instruments and stents is a challenge. In such practical applications the pseudoelastic effect as well as the one‐way and two‐way shape memory effects are utilized. These material properties are caused by martensitic phase transitions between austenite and martensite. In the present contribution, a recently proposed constitutive theory is numerically treated in the context of the finite element method. This constitutive theory is formulated in the framework of continuum thermomechanics for geometrically linear problems and is able to represent the occurring martensitic phase transitions in shape memory alloys. For the numerical integration of the evolution equations, the backward Euler method is applied. In spite of the complexity of the constitutive theory, it is shown that an improved integration procedure can be formulated, which merely involves the solution of three non‐linear equations for three scalar‐valued unknown variables. Numerical examples show the capability of the proposed model and the improved integration algorithm. Copyright © 2006 John Wiley & Sons, Ltd.
Bibliography:istex:EFA29911BCCC7F0EF6B595294ECCFD60314BDB59
German Research Foundation
ark:/67375/WNG-7V1DGG6G-J
ArticleID:NME1822
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0029-5981
1097-0207
DOI:10.1002/nme.1822