A novel fully implicit finite volume method applied to the lid-driven cavity problem-Part I: High Reynolds number flow calculations
A novel implicit cell‐vertex finite volume method is described for the solution of the Navier–Stokes equations at high Reynolds numbers. The key idea is the elimination of the pressure term from the momentum equation by multiplying the momentum equation with the unit normal vector to a control volum...
Saved in:
| Published in: | International journal for numerical methods in fluids Vol. 42; no. 1; pp. 57 - 77 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Chichester, UK
John Wiley & Sons, Ltd
10.05.2003
Wiley |
| Subjects: | |
| ISSN: | 0271-2091, 1097-0363 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A novel implicit cell‐vertex finite volume method is described for the solution of the Navier–Stokes equations at high Reynolds numbers. The key idea is the elimination of the pressure term from the momentum equation by multiplying the momentum equation with the unit normal vector to a control volume boundary and integrating thereafter around this boundary. The resulting equations are expressed solely in terms of the velocity components. Thus any difficulties with pressure or vorticity boundary conditions are circumvented and the number of primary variables that need to be determined equals the number of space dimensions. The method is applied to both the steady and unsteady two‐dimensional lid‐driven cavity problem at Reynolds numbers up to 10000. Results are compared with those in the literature and show excellent agreement. Copyright © 2003 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | A novel implicit cell‐vertex finite volume method is described for the solution of the Navier–Stokes equations at high Reynolds numbers. The key idea is the elimination of the pressure term from the momentum equation by multiplying the momentum equation with the unit normal vector to a control volume boundary and integrating thereafter around this boundary. The resulting equations are expressed solely in terms of the velocity components. Thus any difficulties with pressure or vorticity boundary conditions are circumvented and the number of primary variables that need to be determined equals the number of space dimensions. The method is applied to both the steady and unsteady two‐dimensional lid‐driven cavity problem at Reynolds numbers up to 10000. Results are compared with those in the literature and show excellent agreement. Copyright © 2003 John Wiley & Sons, Ltd. |
| Author | Owens, Robert G. Sahin, Mehmet |
| Author_xml | – sequence: 1 givenname: Mehmet surname: Sahin fullname: Sahin, Mehmet organization: FSTI-ISE-LMF, Ecole Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland – sequence: 2 givenname: Robert G. surname: Owens fullname: Owens, Robert G. email: robert.owens@epfl.ch organization: FSTI-ISE-LMF, Ecole Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14742224$$DView record in Pascal Francis |
| BookMark | eNp10Mtu1DAUBmALFYlpqXgFbxALlOJb7Am7MqUXaQRVVQRiYzm-MAbHjmzPlKx5cQJTdQHq6izOdy76D8FBTNEC8AKjE4wQeeOCOWGMPAELjDrRIMrpAVggInBDUIefgcNSviOEOrKkC_DrFMa0swG6bQgT9MMYvPYVOh99tXCXwnawcLB1kwxU49y1BtYE68bC4E1jst_ZCLXa-TrBMac-2KG5VrnCq7fw0n_bwBs7xRRMgXE79DZDF9LdPBD0NqjqUyzPwVOnQrHH9_UIfDp_f7u6bNYfL65Wp-tGUyJIw1BPlk4Q6zqBWt4uscaEI80M71DvFG5b1RrScyY45pawrrUccaUMparVnB6Bl_u9oyrzfZdV1L7IMftB5UliJhghhM2u2TudUynZOjkn8vfVmpUPEiP5J2k5Jy3npGf_6h__sPI_-Xov73yw02NMnq_P9vr-D1-q_fmgVf4huaCilZ8_XMjll5vu6zuykmf0NzZ_nfE |
| CODEN | IJNFDW |
| CitedBy_id | crossref_primary_10_1002_zamm_200900245 crossref_primary_10_1016_j_camwa_2017_01_024 crossref_primary_10_1016_j_camwa_2023_12_014 crossref_primary_10_1080_10618562_2010_539974 crossref_primary_10_1016_j_jnnfm_2012_11_006 crossref_primary_10_1016_j_cam_2012_08_014 crossref_primary_10_1080_15502287_2011_572113 crossref_primary_10_1002_fld_4786 crossref_primary_10_1016_j_jcp_2012_12_010 crossref_primary_10_1016_j_cam_2016_09_022 crossref_primary_10_1016_j_cma_2013_08_004 crossref_primary_10_1016_j_jnnfm_2004_08_002 crossref_primary_10_1016_j_jnnfm_2012_03_007 crossref_primary_10_1002_fld_1821 crossref_primary_10_1002_fld_4749 crossref_primary_10_1016_j_compfluid_2012_03_024 crossref_primary_10_1016_j_advengsoft_2016_05_010 crossref_primary_10_1016_j_finel_2017_11_011 crossref_primary_10_1017_jfm_2019_512 crossref_primary_10_1016_j_jcp_2012_10_043 crossref_primary_10_1016_j_jnnfm_2016_01_009 crossref_primary_10_1016_j_jnnfm_2016_03_001 crossref_primary_10_1016_j_apm_2012_10_034 crossref_primary_10_1016_j_cpc_2012_11_001 crossref_primary_10_1016_j_powtec_2013_11_047 crossref_primary_10_1016_j_ijheatfluidflow_2016_07_011 crossref_primary_10_1177_0958305X231215321 crossref_primary_10_1016_j_compfluid_2016_03_021 crossref_primary_10_1016_j_euromechflu_2025_204313 crossref_primary_10_1016_j_jcp_2010_07_030 crossref_primary_10_1016_j_jcp_2021_110412 crossref_primary_10_1016_j_apm_2020_01_057 crossref_primary_10_1016_j_enganabound_2014_11_035 crossref_primary_10_1002_fld_4992 crossref_primary_10_1002_fld_5289 crossref_primary_10_2514_1_J052884 crossref_primary_10_1002_fld_4279 crossref_primary_10_1016_j_ijheatfluidflow_2007_04_018 crossref_primary_10_1007_s00033_018_0933_x crossref_primary_10_1016_j_jnnfm_2009_08_004 crossref_primary_10_1080_15502287_2024_2395996 crossref_primary_10_1016_j_camwa_2020_08_014 crossref_primary_10_1016_j_apm_2007_02_029 crossref_primary_10_1080_10618562_2016_1270449 crossref_primary_10_1016_j_compfluid_2010_09_006 crossref_primary_10_1108_HFF_01_2015_0020 crossref_primary_10_1016_j_jcp_2020_110005 crossref_primary_10_1108_HFF_12_2010_0196 crossref_primary_10_1016_j_enganabound_2023_05_013 crossref_primary_10_1088_1873_7005_ab7bcf crossref_primary_10_4208_nmtma_2016_m1422 crossref_primary_10_1016_j_compfluid_2023_105897 crossref_primary_10_1016_j_jcp_2010_12_031 crossref_primary_10_1038_s41557_024_01665_z crossref_primary_10_1016_j_euromechflu_2012_12_002 crossref_primary_10_1080_10407782_2014_894387 crossref_primary_10_1177_09544062231166825 crossref_primary_10_1088_1757_899X_577_1_012134 crossref_primary_10_3390_pr9091508 crossref_primary_10_1016_j_jtice_2014_01_007 crossref_primary_10_1002_fld_3665 crossref_primary_10_1016_j_jcp_2013_09_027 crossref_primary_10_1016_j_jcp_2009_01_003 crossref_primary_10_1016_j_enganabound_2021_06_015 crossref_primary_10_1134_S0081543808050088 crossref_primary_10_1002_nme_3184 crossref_primary_10_1016_j_amc_2024_128839 crossref_primary_10_1016_j_jfluidstructs_2018_09_007 crossref_primary_10_1108_HFF_06_2012_0136 crossref_primary_10_1016_j_compfluid_2015_02_009 crossref_primary_10_4028_www_scientific_net_AMM_592_594_1652 crossref_primary_10_1016_j_jcp_2018_10_047 crossref_primary_10_1016_j_jcp_2016_08_047 crossref_primary_10_1016_j_compfluid_2025_106812 crossref_primary_10_1002_fld_1759 crossref_primary_10_1002_nme_5509 crossref_primary_10_1088_1873_7005_ad56c5 crossref_primary_10_1108_HFF_06_2019_0519 crossref_primary_10_1108_HFF_08_2015_0320 crossref_primary_10_1016_j_apm_2009_02_009 crossref_primary_10_1002_fld_1035 crossref_primary_10_3390_app13020888 crossref_primary_10_1016_j_cam_2014_07_025 crossref_primary_10_1002_fld_533 crossref_primary_10_1590_S0104_66322013000400023 crossref_primary_10_1002_num_20236 crossref_primary_10_1016_j_enganabound_2019_06_004 crossref_primary_10_1080_10407790_2013_836052 crossref_primary_10_1016_j_euromechflu_2022_02_005 |
| Cites_doi | 10.1016/S0168-9274(99)00139-7 10.1016/0021-9991(91)90261-I 10.1002/fld.165 10.1016/0045-7930(94)90036-1 10.1016/0021-9991(82)90058-4 10.1016/S0377-0257(99)00073-7 10.1006/jcph.2001.6817 10.1016/0021-9991(90)90149-U 10.1016/0021-9991(86)90035-5 10.1002/fld.533 10.1002/(SICI)1097-0207(19991110)46:7<1127::AID-NME746>3.0.CO;2-G 10.1016/S0045-7825(98)00363-6 10.1090/S0025-5718-97-00886-7 10.1016/0045-7930(94)90003-5 10.1016/0045-7930(94)00017-S 10.1002/fld.164 10.1002/(SICI)1521-4001(199811)78:11<743::AID-ZAMM743>3.0.CO;2-I 10.1016/S0045-7825(00)00320-0 10.1017/CBO9780511574856.008 10.1137/S1064827596304034 10.1016/S0045-7930(97)00001-7 10.1515/9783112575406-030 10.1016/0021-9991(90)90204-E 10.1017/S0022112066000545 10.1007/s004660050274 10.1016/S0045-7930(96)00032-1 10.1002/(SICI)1097-0363(19971030)25:8<907::AID-FLD592>3.0.CO;2-T 10.1006/jcph.1998.5862 10.1016/0021-9991(88)90007-1 10.1006/jcph.1995.1103 10.1016/S0045-7825(99)00171-1 10.1017/S0001924000027810 10.1002/(SICI)1097-0363(20000229)32:4<439::AID-FLD946>3.0.CO;2-Y 10.1023/A:1011932500831 10.1016/0021-9991(82)90032-8 10.1016/0021-9991(87)90182-3 10.1146/annurev.fl.23.010191.002213 10.1017/S0022112097007866 10.1002/(SICI)1097-0363(19970228)24:4<375::AID-FLD499>3.0.CO;2-2 10.1002/fld.166 10.1016/S0045-7930(98)00002-4 10.1137/S1064827500373395 10.1016/S0045-7930(97)00004-2 10.1017/S0022112064000015 10.1016/0168-9274(91)90035-X 10.1002/fld.121 10.1051/m2an/1994280606991 |
| ContentType | Journal Article |
| Copyright | Copyright © 2003 John Wiley & Sons, Ltd. 2003 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2003 John Wiley & Sons, Ltd. – notice: 2003 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW |
| DOI | 10.1002/fld.442 |
| DatabaseName | Istex CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Physics |
| EISSN | 1097-0363 |
| EndPage | 77 |
| ExternalDocumentID | 14742224 10_1002_fld_442 FLD442 ark_67375_WNG_8XR9ZB2C_D |
| Genre | article |
| GrantInformation_xml | – fundername: Swiss National Science Foundation funderid: 21‐61865.00 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 SUPJJ TN5 TUS UB1 V2E VOH W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~02 ~A~ ~IA ~WT AAHHS ABTAH ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN RWI RWS WRC AAYXX CITATION O8X 6TJ ABEML ACSCC AGHNM AI. AMVHM HF~ IQODW M6O PALCI RIWAO RJQFR RYL SAMSI VH1 |
| ID | FETCH-LOGICAL-c3272-40b28f72ef97056581c1260c4d690bfa155a5d2b647616e2495e606aad33a5c63 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 126 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000182646300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0271-2091 |
| IngestDate | Mon Jul 21 09:15:12 EDT 2025 Sat Nov 29 06:13:08 EST 2025 Tue Nov 18 22:22:00 EST 2025 Wed Jan 22 16:25:22 EST 2025 Tue Nov 11 03:33:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Large Reynolds number Streamlines Computational fluid dynamics Digital simulation Vorticity Velocity distribution Unsteady flow Incompressible fluid Cavity flow Mesh generation Finite volume methods Moving wall |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3272-40b28f72ef97056581c1260c4d690bfa155a5d2b647616e2495e606aad33a5c63 |
| Notes | Swiss National Science Foundation - No. 21-61865.00 ark:/67375/WNG-8XR9ZB2C-D istex:9C59792226314A971C081F16F8D60C8A68C0F794 ArticleID:FLD442 |
| PageCount | 21 |
| ParticipantIDs | pascalfrancis_primary_14742224 crossref_citationtrail_10_1002_fld_442 crossref_primary_10_1002_fld_442 wiley_primary_10_1002_fld_442_FLD442 istex_primary_ark_67375_WNG_8XR9ZB2C_D |
| PublicationCentury | 2000 |
| PublicationDate | 10 May 2003 |
| PublicationDateYYYYMMDD | 2003-05-10 |
| PublicationDate_xml | – month: 05 year: 2003 text: 10 May 2003 day: 10 |
| PublicationDecade | 2000 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
| PublicationTitle | International journal for numerical methods in fluids |
| PublicationTitleAlternate | Int. J. Numer. Meth. Fluids |
| PublicationYear | 2003 |
| Publisher | John Wiley & Sons, Ltd Wiley |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
| References | Gustafson K, Halasi K. Cavity flow dynamics at higher Reynolds number and higher aspect ratio. Journal of Computational Physics 1987; 70(2):271-283. Mai-Duy N, Tran-Cong T. Numerical solution of Navier-Stokes equations using multiquadric radial basis function networks. International Journal for Numerical Methods in Fluids 2001; 37(1):65-86. Moffatt HK. Viscous and resistive eddies near a sharp corner. Journal of Fluid Mechanics 1964; 18(1):1-18. Barragy E, Carey GF. Stream function-vorticity driven cavity solution using p finite elements. Computers & Fluids 1997; 26(5):453-468. Gatski TB, Grosch CE, Rose ME. A numerical study of the two-dimensional Navier-Stokes equations in vorticity-velocity variables. Journal of Computational Physics 1982; 48(1):1-22. Goodrich JW, Gustafson K, Halasi K. Hopf bifurcation in the driven cavity. Journal of Computational Physics 1990; 90(1):219-261. Gustafson K, Halasi K. Vortex dynamics of cavity flows. Journal of Computational Physics 1986; 64(2):279-319. Burggraf OR. Analytical and numerical studies of the structure of steady separated flows. Journal of Fluid Mechanics 1966; 24(1):113-151. Wright NG, Gaskell PH. An efficient multigrid approach to solving highly recirculating flows. Computers & Fluids 1995; 24(1):63-79. Chang S, Haworth DC. Adaptive grid refinement using cell-level and global imbalances. International Journal for Numerical Methods in Fluids 1997; 24(4):375-392. Hou S, Zou Q, Chen S, Doolen G, Cogley AC. Simulation of cavity flow by the lattice Boltzmann method. Journal of Computational Physics 1995; 118(2):329-347. Xue SC, Phan-Thien N, Tanner RI. Fully three-dimensional, time-dependent numerical simulations of Newtonian and viscoelastic flows in a confined cylinder-Part I. Method and steady flows. Journal of Non-Newtonian Fluid Mechanics 1999; 87(2-3):337-367. Meister A, Oevermann M. An implicit finite volume approach of the k-εturbulence model on unstructured grids. Zeitschrift Fur Angewandte Mathematik und Mechanik 1998; 78(11):743-757. Botella O. On the solution of the Navier-Stokes equations using Chebyshev projection schemes with third-order accuracy in time. Computers & Fluids 1997; 26(2):107-116. Davies C, Carpenter PW. A novel velocity-vorticity formulation of the Navier-Stokes equations with applications to boundary layer disturbance evolution. Journal of Computational Physics 2001; 172(1):119-165. Deng GB, Piquet J, Queutey P, Visonneau M. Incompressible-flow calculations with a consistent physical interpolation finite-volume approach. Computers & Fluids 1994; 23(8):1029-1047. Shen J. Hopf bifurcation of the unsteady regularized driven cavity flow. Journal of Computational Physics 1991; 95(1):228-245. Botella O, Peyret R. Computing singular solutions of the Navier-Stokes equations with the Chebyshev-collocation method. International Journal for Numerical Methods in Fluids 2001; 36(2):125-163. Pozrikidis C. Numerical investigation of the effect of surfactants on the stability and rheology of emulsions and foam. Journal of Engineering Mathematics 2001; 41(2-3):237-258. Gresho PM. Incompressible fluid dynamics: Some fundamental formulation issues. Annual Review of Fluid Mechanics 1991; 23:413-453. Morton KW, Stynes M. An analysis of the cell vertex method. RAIRO-Modél. Math. Anal. Numér. 1994; 28(6):699-724. Aydin M, Fenner RT. Boundary element analysis of driven cavity flow for low and moderate Reynolds numbers. International Journal for Numerical Methods in Fluids 2001; 37(1):45-64. Pozrikidis C. Numerical studies of cusp formation at fluid interfaces in Stokes flow. Journal of Fluid Mechanics 1998; 357:29-57. Sahin M, Owens RG. A novel fully-implicit finite volume method applied to the lid-driven cavity problem Part II. Linear stability analysis. International Journal for Numerical Methods in Fluids 2003; 42:79-88. Bruneau C-H, Jouron C. An efficient scheme for solving steady incompressible Navier-Stokes equations. Journal of Computational Physics 1990; 89(2):389-413. Hansen EB, Kelmanson MA. An integral equation justification of the boundary conditions of the driven cavity problem. Computers & Fluids 1994; 23(1):225-240. Soh WY, Goodrich JW. Unsteady solution of incompressible Navier-Stokes equations. Journal of Computational Physics 1988; 79(1):113-134. Kjellgren P. A semi-implicit fractional step finite element method for viscous incompressible flows. Computational Mechanics 1997; 20:541-550. Botella O, Peyret R. Benchmark spectral results on the lid-driven cavity flow. Computers & Fluids 1998; 27(4):421-433. Chang RY, Yang WH. Numerical simulation of mold filling in injection molding using a three-dimensional finite volume approach. International Journal for Numerical Methods in Fluids 2001; 37(2):125-148. Kupferman R. A central-difference scheme for a pure stream function formulation of incompressible viscous flow. SIAM Journal on Scientific Computing 2001; 23(1):1-18. Guo DX. A second order scheme for the Navier-Stokes equations: application to the driven-cavity problem. Applied Numerical Mathematics 2000; 35(4):307-322. Morton KW, Stynes M, Suli E. Analysis of a cell-vertex finite volume method for convection-diffusion problems. Mathematics of Computation 1997; 66(220):1389-1406. Liu CH, Leung DYC. Development of a finite element solution for the unsteady Navier-Stokes equations using projection method and fractional-θ-scheme. Computer Methods in Applied Mechanics and Engineering 2001; 190(32-33):4301-4317. Xue SC, Tanner RI, Phan-Thien N. Three-dimensional numerical simulations of viscoelastic flows-predictability and accuracy. Computers Methods in Applied Mechanics and Engineering 1999; 180(3-4):305-331. Meister A. Comparison of different Krylov subspace methods embedded in an implicit finite volume scheme for the computation of viscous and inviscid flow fields on unstructured grids. Journal of Computational Physics 1998; 140(2):311-345. Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics 1982; 48(3):387-411. Knoll DA, McHugh PR. Enhanced nonlinear iterative techniques applied to a nonequilibrium plasma flow. SIAM Journal on Scientific Computing 1998; 19(1):291-301. Allievi A, Bermejo R. Finite element modified method of characteristics for the Navier-Stokes equations. International Journal for Numerical Methods in Fluids 2000; 32(4):439-464. Sedaghat A, Ackroyd JAD, Wood NJ. Turbulence modelling for supercritical flows including examples with passive shock control. Aeronautical Journal 1999; 103(1020):113-125. Henderson RD. Dynamic refinement algorithms for spectral element methods. Computer Methods in Applied Mechanics and Engineering 1999; 175(3-4):395-411. Grigoriev MM, Dargush GF. A poly-region boundary element method for incompressible viscous fluid flows. International Journal for Numerical Methods in Engineering 1999; 46(7):1127-1158. Gatski TB. Review of incompressible fluid flow computations using the vorticity-velocity formulation. Applied Numerical Mathematics 1991; 7(3):227-239. Calhoon WH, Roach RL. A naturally upwinded conservative procedure for the incompressible Navier-Stokes equations on non-staggered grids. Computers & Fluids 1997; 26(5):525-545. Grigoriev MM, Fafurin AV. A boundary element method for steady viscous fluid flow using penalty function formulation. International Journal for Numerical Methods in Fluids 1997; 25(8):907-929. 1998; 27 1997; 66 1997; 20 1987; 70 1997; 26 1997; 25 1997; 24 1991; 95 1999; 46 1994; 23 1995; 118 1988; 79 1999; 87 1998; 357 1999; 103 1993 2003 1994; 28 2001; 23 1991; 7 2001; 41 1982; 48 2001; 172 1990; 89 1998; 19 1964; 18 1991; 23 1986; 64 2001; 190 2000; 35 2000; 32 1995; 24 1999; 180 1999; 175 1962 2001; 37 1966; 24 1990; 90 2001; 36 1998; 78 1998; 140 2003; 42 Taylor GI (e_1_2_1_30_2) 1962 e_1_2_1_40_2 e_1_2_1_22_2 e_1_2_1_45_2 e_1_2_1_23_2 e_1_2_1_44_2 e_1_2_1_20_2 e_1_2_1_21_2 e_1_2_1_42_2 e_1_2_1_26_2 e_1_2_1_49_2 e_1_2_1_27_2 e_1_2_1_48_2 e_1_2_1_24_2 e_1_2_1_47_2 e_1_2_1_25_2 e_1_2_1_46_2 Morton KW (e_1_2_1_43_2) 1994; 28 e_1_2_1_28_2 e_1_2_1_29_2 e_1_2_1_6_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_2_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_33_2 e_1_2_1_32_2 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_15_2 e_1_2_1_38_2 e_1_2_1_16_2 e_1_2_1_37_2 e_1_2_1_13_2 e_1_2_1_36_2 e_1_2_1_14_2 e_1_2_1_35_2 e_1_2_1_19_2 Sedaghat A (e_1_2_1_41_2) 1999; 103 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 e_1_2_1_39_2 |
| References_xml | – reference: Chang S, Haworth DC. Adaptive grid refinement using cell-level and global imbalances. International Journal for Numerical Methods in Fluids 1997; 24(4):375-392. – reference: Calhoon WH, Roach RL. A naturally upwinded conservative procedure for the incompressible Navier-Stokes equations on non-staggered grids. Computers & Fluids 1997; 26(5):525-545. – reference: Henderson RD. Dynamic refinement algorithms for spectral element methods. Computer Methods in Applied Mechanics and Engineering 1999; 175(3-4):395-411. – reference: Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics 1982; 48(3):387-411. – reference: Meister A, Oevermann M. An implicit finite volume approach of the k-εturbulence model on unstructured grids. Zeitschrift Fur Angewandte Mathematik und Mechanik 1998; 78(11):743-757. – reference: Botella O, Peyret R. Benchmark spectral results on the lid-driven cavity flow. Computers & Fluids 1998; 27(4):421-433. – reference: Grigoriev MM, Fafurin AV. A boundary element method for steady viscous fluid flow using penalty function formulation. International Journal for Numerical Methods in Fluids 1997; 25(8):907-929. – reference: Chang RY, Yang WH. Numerical simulation of mold filling in injection molding using a three-dimensional finite volume approach. International Journal for Numerical Methods in Fluids 2001; 37(2):125-148. – reference: Bruneau C-H, Jouron C. An efficient scheme for solving steady incompressible Navier-Stokes equations. Journal of Computational Physics 1990; 89(2):389-413. – reference: Hansen EB, Kelmanson MA. An integral equation justification of the boundary conditions of the driven cavity problem. Computers & Fluids 1994; 23(1):225-240. – reference: Gustafson K, Halasi K. Vortex dynamics of cavity flows. Journal of Computational Physics 1986; 64(2):279-319. – reference: Burggraf OR. Analytical and numerical studies of the structure of steady separated flows. Journal of Fluid Mechanics 1966; 24(1):113-151. – reference: Kjellgren P. A semi-implicit fractional step finite element method for viscous incompressible flows. Computational Mechanics 1997; 20:541-550. – reference: Sahin M, Owens RG. A novel fully-implicit finite volume method applied to the lid-driven cavity problem Part II. Linear stability analysis. International Journal for Numerical Methods in Fluids 2003; 42:79-88. – reference: Guo DX. A second order scheme for the Navier-Stokes equations: application to the driven-cavity problem. Applied Numerical Mathematics 2000; 35(4):307-322. – reference: Shen J. Hopf bifurcation of the unsteady regularized driven cavity flow. Journal of Computational Physics 1991; 95(1):228-245. – reference: Sedaghat A, Ackroyd JAD, Wood NJ. Turbulence modelling for supercritical flows including examples with passive shock control. Aeronautical Journal 1999; 103(1020):113-125. – reference: Meister A. Comparison of different Krylov subspace methods embedded in an implicit finite volume scheme for the computation of viscous and inviscid flow fields on unstructured grids. Journal of Computational Physics 1998; 140(2):311-345. – reference: Botella O, Peyret R. Computing singular solutions of the Navier-Stokes equations with the Chebyshev-collocation method. International Journal for Numerical Methods in Fluids 2001; 36(2):125-163. – reference: Gresho PM. Incompressible fluid dynamics: Some fundamental formulation issues. Annual Review of Fluid Mechanics 1991; 23:413-453. – reference: Pozrikidis C. Numerical investigation of the effect of surfactants on the stability and rheology of emulsions and foam. Journal of Engineering Mathematics 2001; 41(2-3):237-258. – reference: Hou S, Zou Q, Chen S, Doolen G, Cogley AC. Simulation of cavity flow by the lattice Boltzmann method. Journal of Computational Physics 1995; 118(2):329-347. – reference: Deng GB, Piquet J, Queutey P, Visonneau M. Incompressible-flow calculations with a consistent physical interpolation finite-volume approach. Computers & Fluids 1994; 23(8):1029-1047. – reference: Morton KW, Stynes M, Suli E. Analysis of a cell-vertex finite volume method for convection-diffusion problems. Mathematics of Computation 1997; 66(220):1389-1406. – reference: Knoll DA, McHugh PR. Enhanced nonlinear iterative techniques applied to a nonequilibrium plasma flow. SIAM Journal on Scientific Computing 1998; 19(1):291-301. – reference: Aydin M, Fenner RT. Boundary element analysis of driven cavity flow for low and moderate Reynolds numbers. International Journal for Numerical Methods in Fluids 2001; 37(1):45-64. – reference: Moffatt HK. Viscous and resistive eddies near a sharp corner. Journal of Fluid Mechanics 1964; 18(1):1-18. – reference: Goodrich JW, Gustafson K, Halasi K. Hopf bifurcation in the driven cavity. Journal of Computational Physics 1990; 90(1):219-261. – reference: Xue SC, Phan-Thien N, Tanner RI. Fully three-dimensional, time-dependent numerical simulations of Newtonian and viscoelastic flows in a confined cylinder-Part I. Method and steady flows. Journal of Non-Newtonian Fluid Mechanics 1999; 87(2-3):337-367. – reference: Allievi A, Bermejo R. Finite element modified method of characteristics for the Navier-Stokes equations. International Journal for Numerical Methods in Fluids 2000; 32(4):439-464. – reference: Pozrikidis C. Numerical studies of cusp formation at fluid interfaces in Stokes flow. Journal of Fluid Mechanics 1998; 357:29-57. – reference: Gustafson K, Halasi K. Cavity flow dynamics at higher Reynolds number and higher aspect ratio. Journal of Computational Physics 1987; 70(2):271-283. – reference: Botella O. On the solution of the Navier-Stokes equations using Chebyshev projection schemes with third-order accuracy in time. Computers & Fluids 1997; 26(2):107-116. – reference: Kupferman R. A central-difference scheme for a pure stream function formulation of incompressible viscous flow. SIAM Journal on Scientific Computing 2001; 23(1):1-18. – reference: Gatski TB, Grosch CE, Rose ME. A numerical study of the two-dimensional Navier-Stokes equations in vorticity-velocity variables. Journal of Computational Physics 1982; 48(1):1-22. – reference: Liu CH, Leung DYC. Development of a finite element solution for the unsteady Navier-Stokes equations using projection method and fractional-θ-scheme. Computer Methods in Applied Mechanics and Engineering 2001; 190(32-33):4301-4317. – reference: Mai-Duy N, Tran-Cong T. Numerical solution of Navier-Stokes equations using multiquadric radial basis function networks. International Journal for Numerical Methods in Fluids 2001; 37(1):65-86. – reference: Xue SC, Tanner RI, Phan-Thien N. Three-dimensional numerical simulations of viscoelastic flows-predictability and accuracy. Computers Methods in Applied Mechanics and Engineering 1999; 180(3-4):305-331. – reference: Soh WY, Goodrich JW. Unsteady solution of incompressible Navier-Stokes equations. Journal of Computational Physics 1988; 79(1):113-134. – reference: Davies C, Carpenter PW. A novel velocity-vorticity formulation of the Navier-Stokes equations with applications to boundary layer disturbance evolution. Journal of Computational Physics 2001; 172(1):119-165. – reference: Morton KW, Stynes M. An analysis of the cell vertex method. RAIRO-Modél. Math. Anal. Numér. 1994; 28(6):699-724. – reference: Wright NG, Gaskell PH. An efficient multigrid approach to solving highly recirculating flows. Computers & Fluids 1995; 24(1):63-79. – reference: Gatski TB. Review of incompressible fluid flow computations using the vorticity-velocity formulation. Applied Numerical Mathematics 1991; 7(3):227-239. – reference: Grigoriev MM, Dargush GF. A poly-region boundary element method for incompressible viscous fluid flows. International Journal for Numerical Methods in Engineering 1999; 46(7):1127-1158. – reference: Barragy E, Carey GF. Stream function-vorticity driven cavity solution using p finite elements. Computers & Fluids 1997; 26(5):453-468. – volume: 37 start-page: 65 issue: 1 year: 2001 end-page: 86 article-title: Numerical solution of Navier–Stokes equations using multiquadric radial basis function networks publication-title: International Journal for Numerical Methods in Fluids – volume: 23 start-page: 1029 issue: 8 year: 1994 end-page: 1047 article-title: Incompressible‐flow calculations with a consistent physical interpolation finite‐volume approach publication-title: Computers & Fluids – volume: 190 start-page: 4301 issue: 32–33 year: 2001 end-page: 4317 article-title: Development of a finite element solution for the unsteady Navier–Stokes equations using projection method and fractional‐θ‐scheme publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 175 start-page: 395 issue: 3–4 year: 1999 end-page: 411 article-title: Dynamic refinement algorithms for spectral element methods publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 46 start-page: 1127 issue: 7 year: 1999 end-page: 1158 article-title: A poly‐region boundary element method for incompressible viscous fluid flows publication-title: International Journal for Numerical Methods in Engineering – volume: 172 start-page: 119 issue: 1 year: 2001 end-page: 165 article-title: A novel velocity–vorticity formulation of the Navier–Stokes equations with applications to boundary layer disturbance evolution publication-title: Journal of Computational Physics – volume: 95 start-page: 228 issue: 1 year: 1991 end-page: 245 article-title: Hopf bifurcation of the unsteady regularized driven cavity flow publication-title: Journal of Computational Physics – volume: 27 start-page: 421 issue: 4 year: 1998 end-page: 433 article-title: Benchmark spectral results on the lid‐driven cavity flow publication-title: Computers & Fluids – volume: 32 start-page: 439 issue: 4 year: 2000 end-page: 464 article-title: Finite element modified method of characteristics for the Navier–Stokes equations publication-title: International Journal for Numerical Methods in Fluids – volume: 20 start-page: 541 year: 1997 end-page: 550 article-title: A semi‐implicit fractional step finite element method for viscous incompressible flows publication-title: Computational Mechanics – volume: 19 start-page: 291 issue: 1 year: 1998 end-page: 301 article-title: Enhanced nonlinear iterative techniques applied to a nonequilibrium plasma flow publication-title: SIAM Journal on Scientific Computing – year: 2003 – volume: 26 start-page: 107 issue: 2 year: 1997 end-page: 116 article-title: On the solution of the Navier–Stokes equations using Chebyshev projection schemes with third‐order accuracy in time publication-title: Computers & Fluids – volume: 64 start-page: 279 issue: 2 year: 1986 end-page: 319 article-title: Vortex dynamics of cavity flows publication-title: Journal of Computational Physics – volume: 103 start-page: 113 issue: 1020 year: 1999 end-page: 125 article-title: Turbulence modelling for supercritical flows including examples with passive shock control publication-title: Aeronautical Journal – volume: 89 start-page: 389 issue: 2 year: 1990 end-page: 413 article-title: An efficient scheme for solving steady incompressible Navier–Stokes equations publication-title: Journal of Computational Physics – volume: 90 start-page: 219 issue: 1 year: 1990 end-page: 261 article-title: Hopf bifurcation in the driven cavity publication-title: Journal of Computational Physics – volume: 36 start-page: 125 issue: 2 year: 2001 end-page: 163 article-title: Computing singular solutions of the Navier–Stokes equations with the Chebyshev‐collocation method publication-title: International Journal for Numerical Methods in Fluids – volume: 79 start-page: 113 issue: 1 year: 1988 end-page: 134 article-title: Unsteady solution of incompressible Navier–Stokes equations publication-title: Journal of Computational Physics – volume: 87 start-page: 337 issue: 2–3 year: 1999 end-page: 367 article-title: Fully three‐dimensional, time‐dependent numerical simulations of Newtonian and viscoelastic flows in a confined cylinder—Part I. Method and steady flows publication-title: Journal of Non‐Newtonian Fluid Mechanics – volume: 48 start-page: 387 issue: 3 year: 1982 end-page: 411 article-title: High‐Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method publication-title: Journal of Computational Physics – volume: 118 start-page: 329 issue: 2 year: 1995 end-page: 347 article-title: Simulation of cavity flow by the lattice Boltzmann method publication-title: Journal of Computational Physics – volume: 26 start-page: 453 issue: 5 year: 1997 end-page: 468 article-title: Stream function‐vorticity driven cavity solution using finite elements publication-title: Computers & Fluids – volume: 23 start-page: 225 issue: 1 year: 1994 end-page: 240 article-title: An integral equation justification of the boundary conditions of the driven cavity problem publication-title: Computers & Fluids – volume: 18 start-page: 1 issue: 1 year: 1964 end-page: 18 article-title: Viscous and resistive eddies near a sharp corner publication-title: Journal of Fluid Mechanics – volume: 23 start-page: 413 year: 1991 end-page: 453 article-title: Incompressible fluid dynamics: Some fundamental formulation issues publication-title: Annual Review of Fluid Mechanics – volume: 48 start-page: 1 issue: 1 year: 1982 end-page: 22 article-title: A numerical study of the two‐dimensional Navier–Stokes equations in vorticity–velocity variables publication-title: Journal of Computational Physics – volume: 180 start-page: 305 issue: 3–4 year: 1999 end-page: 331 article-title: Three‐dimensional numerical simulations of viscoelastic flows—predictability and accuracy publication-title: Computers Methods in Applied Mechanics and Engineering – volume: 26 start-page: 525 issue: 5 year: 1997 end-page: 545 article-title: A naturally upwinded conservative procedure for the incompressible Navier–Stokes equations on non‐staggered grids publication-title: Computers & Fluids – start-page: 183 year: 1993 end-page: 201 – volume: 140 start-page: 311 issue: 2 year: 1998 end-page: 345 article-title: Comparison of different Krylov subspace methods embedded in an implicit finite volume scheme for the computation of viscous and inviscid flow fields on unstructured grids publication-title: Journal of Computational Physics – volume: 35 start-page: 307 issue: 4 year: 2000 end-page: 322 article-title: A second order scheme for the Navier–Stokes equations: application to the driven‐cavity problem publication-title: Applied Numerical Mathematics – volume: 37 start-page: 125 issue: 2 year: 2001 end-page: 148 article-title: Numerical simulation of mold filling in injection molding using a three‐dimensional finite volume approach publication-title: International Journal for Numerical Methods in Fluids – volume: 42 start-page: 79 year: 2003 end-page: 88 article-title: A novel fully‐implicit finite volume method applied to the lid‐driven cavity problem Part II. Linear stability analysis publication-title: International Journal for Numerical Methods in Fluids – volume: 24 start-page: 113 issue: 1 year: 1966 end-page: 151 article-title: Analytical and numerical studies of the structure of steady separated flows publication-title: Journal of Fluid Mechanics – volume: 24 start-page: 63 issue: 1 year: 1995 end-page: 79 article-title: An efficient multigrid approach to solving highly recirculating flows publication-title: Computers & Fluids – volume: 24 start-page: 375 issue: 4 year: 1997 end-page: 392 article-title: Adaptive grid refinement using cell‐level and global imbalances publication-title: International Journal for Numerical Methods in Fluids – volume: 70 start-page: 271 issue: 2 year: 1987 end-page: 283 article-title: Cavity flow dynamics at higher Reynolds number and higher aspect ratio publication-title: Journal of Computational Physics – volume: 37 start-page: 45 issue: 1 year: 2001 end-page: 64 article-title: Boundary element analysis of driven cavity flow for low and moderate Reynolds numbers publication-title: International Journal for Numerical Methods in Fluids – start-page: 313 year: 1962 end-page: 315 – volume: 7 start-page: 227 issue: 3 year: 1991 end-page: 239 article-title: Review of incompressible fluid flow computations using the vorticity–velocity formulation publication-title: Applied Numerical Mathematics – volume: 357 start-page: 29 year: 1998 end-page: 57 article-title: Numerical studies of cusp formation at fluid interfaces in Stokes flow publication-title: Journal of Fluid Mechanics – volume: 23 start-page: 1 issue: 1 year: 2001 end-page: 18 article-title: A central‐difference scheme for a pure stream function formulation of incompressible viscous flow publication-title: SIAM Journal on Scientific Computing – volume: 28 start-page: 699 issue: 6 year: 1994 end-page: 724 article-title: An analysis of the cell vertex method publication-title: RAIRO—Modél. Math. Anal. Numér. – volume: 41 start-page: 237 issue: 2–3 year: 2001 end-page: 258 article-title: Numerical investigation of the effect of surfactants on the stability and rheology of emulsions and foam publication-title: Journal of Engineering Mathematics – volume: 66 start-page: 1389 issue: 220 year: 1997 end-page: 1406 article-title: Analysis of a cell‐vertex finite volume method for convection–diffusion problems publication-title: Mathematics of Computation – volume: 25 start-page: 907 issue: 8 year: 1997 end-page: 929 article-title: A boundary element method for steady viscous fluid flow using penalty function formulation publication-title: International Journal for Numerical Methods in Fluids – volume: 78 start-page: 743 issue: 11 year: 1998 end-page: 757 article-title: An implicit finite volume approach of the k‐εturbulence model on unstructured grids publication-title: Zeitschrift Fur Angewandte Mathematik und Mechanik – ident: e_1_2_1_10_2 doi: 10.1016/S0168-9274(99)00139-7 – ident: e_1_2_1_22_2 doi: 10.1016/0021-9991(91)90261-I – ident: e_1_2_1_20_2 doi: 10.1002/fld.165 – ident: e_1_2_1_31_2 doi: 10.1016/0045-7930(94)90036-1 – ident: e_1_2_1_4_2 doi: 10.1016/0021-9991(82)90058-4 – ident: e_1_2_1_38_2 doi: 10.1016/S0377-0257(99)00073-7 – ident: e_1_2_1_32_2 doi: 10.1006/jcph.2001.6817 – ident: e_1_2_1_47_2 doi: 10.1016/0021-9991(90)90149-U – ident: e_1_2_1_5_2 doi: 10.1016/0021-9991(86)90035-5 – ident: e_1_2_1_45_2 doi: 10.1002/fld.533 – ident: e_1_2_1_19_2 doi: 10.1002/(SICI)1097-0207(19991110)46:7<1127::AID-NME746>3.0.CO;2-G – ident: e_1_2_1_26_2 doi: 10.1016/S0045-7825(98)00363-6 – ident: e_1_2_1_44_2 doi: 10.1090/S0025-5718-97-00886-7 – ident: e_1_2_1_48_2 doi: 10.1016/0045-7930(94)90003-5 – ident: e_1_2_1_16_2 doi: 10.1016/0045-7930(94)00017-S – ident: e_1_2_1_17_2 doi: 10.1002/fld.164 – ident: e_1_2_1_40_2 doi: 10.1002/(SICI)1521-4001(199811)78:11<743::AID-ZAMM743>3.0.CO;2-I – ident: e_1_2_1_13_2 doi: 10.1016/S0045-7825(00)00320-0 – ident: e_1_2_1_46_2 doi: 10.1017/CBO9780511574856.008 – ident: e_1_2_1_49_2 doi: 10.1137/S1064827596304034 – ident: e_1_2_1_14_2 doi: 10.1016/S0045-7930(97)00001-7 – start-page: 313 volume-title: Miszellaneen der Angewandten Mechanik (Fetschrift Walter Tollmein) year: 1962 ident: e_1_2_1_30_2 doi: 10.1515/9783112575406-030 – ident: e_1_2_1_8_2 doi: 10.1016/0021-9991(90)90204-E – ident: e_1_2_1_2_2 doi: 10.1017/S0022112066000545 – ident: e_1_2_1_12_2 doi: 10.1007/s004660050274 – ident: e_1_2_1_24_2 doi: 10.1016/S0045-7930(96)00032-1 – ident: e_1_2_1_18_2 doi: 10.1002/(SICI)1097-0363(19971030)25:8<907::AID-FLD592>3.0.CO;2-T – ident: e_1_2_1_42_2 doi: 10.1006/jcph.1998.5862 – ident: e_1_2_1_7_2 doi: 10.1016/0021-9991(88)90007-1 – ident: e_1_2_1_21_2 doi: 10.1006/jcph.1995.1103 – ident: e_1_2_1_39_2 doi: 10.1016/S0045-7825(99)00171-1 – volume: 103 start-page: 113 issue: 1020 year: 1999 ident: e_1_2_1_41_2 article-title: Turbulence modelling for supercritical flows including examples with passive shock control publication-title: Aeronautical Journal doi: 10.1017/S0001924000027810 – ident: e_1_2_1_11_2 doi: 10.1002/(SICI)1097-0363(20000229)32:4<439::AID-FLD946>3.0.CO;2-Y – ident: e_1_2_1_35_2 doi: 10.1023/A:1011932500831 – ident: e_1_2_1_3_2 doi: 10.1016/0021-9991(82)90032-8 – ident: e_1_2_1_6_2 doi: 10.1016/0021-9991(87)90182-3 – ident: e_1_2_1_34_2 doi: 10.1146/annurev.fl.23.010191.002213 – ident: e_1_2_1_36_2 doi: 10.1017/S0022112097007866 – ident: e_1_2_1_15_2 doi: 10.1002/(SICI)1097-0363(19970228)24:4<375::AID-FLD499>3.0.CO;2-2 – ident: e_1_2_1_23_2 – ident: e_1_2_1_37_2 doi: 10.1002/fld.166 – ident: e_1_2_1_27_2 doi: 10.1016/S0045-7930(98)00002-4 – ident: e_1_2_1_9_2 doi: 10.1137/S1064827500373395 – ident: e_1_2_1_25_2 doi: 10.1016/S0045-7930(97)00004-2 – ident: e_1_2_1_29_2 doi: 10.1017/S0022112064000015 – ident: e_1_2_1_33_2 doi: 10.1016/0168-9274(91)90035-X – ident: e_1_2_1_28_2 doi: 10.1002/fld.121 – volume: 28 start-page: 699 issue: 6 year: 1994 ident: e_1_2_1_43_2 article-title: An analysis of the cell vertex method publication-title: RAIRO—Modél. Math. Anal. Numér. doi: 10.1051/m2an/1994280606991 |
| SSID | ssj0009283 |
| Score | 2.0661259 |
| Snippet | A novel implicit cell‐vertex finite volume method is described for the solution of the Navier–Stokes equations at high Reynolds numbers. The key idea is the... |
| SourceID | pascalfrancis crossref wiley istex |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 57 |
| SubjectTerms | Computational methods in fluid dynamics direct solver Exact sciences and technology Fluid dynamics Fundamental areas of phenomenology (including applications) high Reynolds numbers implicit finite volume methods Laminar flows Laminar flows in cavities lid-driven cavity flow Physics |
| Title | A novel fully implicit finite volume method applied to the lid-driven cavity problem-Part I: High Reynolds number flow calculations |
| URI | https://api.istex.fr/ark:/67375/WNG-8XR9ZB2C-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.442 |
| Volume | 42 |
| WOSCitedRecordID | wos000182646300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0363 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009283 issn: 0271-2091 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZQywEODAaIDpjeYdotrHadOOE2VgpIVTVVDCoukeMfUkSUoKYb7LYbVw78hftLeI5NuwohIXHKIbYTPT8_f896_j5CDnDPNIpaFiWJHEZcimGUGsdAm4lYqyKTtJNO-DAVs1m6WGSnN6S-PD_E-sDNrYwuXrsFLov2aEMaaiv9gnOMvn2GXst7pD-eT86mG8Zd5jk4maDoChn1N2Zd56PQdWsr6jurfnOlkbJF61gva7ENWbs9Z7LzH397n9wLQBOOvWc8ILdMvUt2AuiEsKTbXXL3BiPhQ_L9GOrmwlTgjuUvoezqzcsV2NJhU_CxDLzsNMgw2KoBhJFQlfr66odeuvgJSjpRCgh6NddXP0_RR-HdS3CFJTA3l3VT6Ra8IAnYqvmKXSoVxMTaR-Rs8vr9ydsoaDVEasQEwzS0YKkVzNhMIKaKU6oopkqKa0y_CysRtshYsyLhIqGJcYrXBnMnKfVoJGOVjB6TXt3U5gkBZo1KMGxkaVFwO1SF1oqpgiqWaSqZHZDD39OWq0Bk7vQ0qtxTMLMcjZ2jsQcE1g2_eO6OP5scdvO-fi-Xn12pm4jzj7M3ebqYZ59esZN8PCD7W46xGZALd4rGB-Sgm_-_fSmfTMf42Pu3Zk_Jna5qsKOJfUZ6q-W5eU5uq4tV2S73g6v_Amv2Bek |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH5CLRJwYDBAlB_jHabdwmo3iRNuY6VsIlRTtUHFJXL8Q4qIEtSUwW67ceXAX7i_BDs2LRVCQuKUQ2wnen5-_p71_H0Au2bPVIJoGsQxHwYhZ8MgUZaBNmWRFEXKSSed8C5j02kyn6cnvqrS3oVx_BCrAze7Mrp4bRe4PZDeX7OG6ko-D0MTfvuhcaKoB_3xbHKWrSl3qSPhpIwYX0iJuzJrO-_7rht7Ud-a9autjeStMY92uhabmLXbdCZb__O7d-C2h5p44HzjLlxT9TZsediJflG323DrN07Ce_DtAOvmXFVoB77Asqs4L5eoS4tO0UUzdMLTyP1gywYNkMSqlFeX3-XCRlAU3MpSoFesubr8cWK8FI9foC0twZm6qJtKtugkSVBXzRfTpRJeTqy9D2eTV6eHR4FXawjEiDJqEtGCJppRpVNmUFWUEEFMsiRCaRLwQnMDXHgkaRGHLCaxsprXymRPnMvRiEciHj2AXt3U6iEg1UrEJnCkSVGEeigKKQUVBRE0lYRTPYC9X_OWC09lbhU1qtyRMNPcGDs3xh4Arhp-cuwdfzbZ6yZ-9Z4vPtpiNxbl76ev82Q-Sz-8pIf5eAA7G56xHjBk9hwtHMBu5wB_-1I-ycbm8ejfmj2DG0enb7M8O56-eQw3uxrCjjT2CfSWi8_qKVwX58uyXex4v_8JBRIJ2Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLbQihAcGAwQHTDeYdotrHaTOOY2VgITVVVVDCouluMfUkSUTE032G03rhz4C_eXYMempUJISJxyiO1Ez-89v_f0_H0I7dszU0tsSJSmYhDFgg6iTDsEWkYTJQsmcEed8GFMJ5NsPmfT0FXp7sJ4fIhVwc1ZRuevnYHrM2UO16ihplIv4ti6316csNQaZW80y0_Ha8hd4kE4CcVWFxj2V2bd5MMwdeMs6jmxfnW9kaK14jGe12IzZu0OnXz7f373HrobQk048rpxH93Q9Q7aDmEnBKNud9Cd3zAJH6BvR1A3F7oCV5i_hLLrOC-XYEoXnYL3ZuCJp0GExZYN2EASqlJdX31XC-dBQQpHSwGBseb66sfUaimcvATXWgIzfVk3lWrBU5KAqZovdkolA51Y-xCd5q_fH7-NAltDJIeEEpuIFiQzlGjDqI2qkgxLbJMlGSubgBdG2MBFJIoUaUxTnGrHea1t9iSEGg5FItPhI7RVN7V-jIAYLVPrOFhWFLEZyEIpSWSBJWEKC2L66ODXvnEZoMwdo0bFPQgz4VbY3Aq7j2A18Myjd_w55KDb-NV7sfjsmt1owj9O3vBsPmOfXpFjPuqjvQ3NWC8YU1dHi_tov1OAv32J5-ORfez-27Dn6NZ0lPPxyeTdE3S7ayHsMGOfoq3l4lw_QzflxbJsF3tB7X8ChE0JVA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+fully+implicit+finite+volume+method+applied+to+the+lid-driven+cavity+problem-Part+I%3A+High+Reynolds+number+flow+calculations&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Sahin%2C+Mehmet&rft.au=Owens%2C+Robert+G.&rft.date=2003-05-10&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=42&rft.issue=1&rft.spage=57&rft.epage=77&rft_id=info:doi/10.1002%2Ffld.442&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_8XR9ZB2C_D |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon |