A novel fully implicit finite volume method applied to the lid-driven cavity problem-Part I: High Reynolds number flow calculations

A novel implicit cell‐vertex finite volume method is described for the solution of the Navier–Stokes equations at high Reynolds numbers. The key idea is the elimination of the pressure term from the momentum equation by multiplying the momentum equation with the unit normal vector to a control volum...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in fluids Vol. 42; no. 1; pp. 57 - 77
Main Authors: Sahin, Mehmet, Owens, Robert G.
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 10.05.2003
Wiley
Subjects:
ISSN:0271-2091, 1097-0363
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A novel implicit cell‐vertex finite volume method is described for the solution of the Navier–Stokes equations at high Reynolds numbers. The key idea is the elimination of the pressure term from the momentum equation by multiplying the momentum equation with the unit normal vector to a control volume boundary and integrating thereafter around this boundary. The resulting equations are expressed solely in terms of the velocity components. Thus any difficulties with pressure or vorticity boundary conditions are circumvented and the number of primary variables that need to be determined equals the number of space dimensions. The method is applied to both the steady and unsteady two‐dimensional lid‐driven cavity problem at Reynolds numbers up to 10000. Results are compared with those in the literature and show excellent agreement. Copyright © 2003 John Wiley & Sons, Ltd.
AbstractList A novel implicit cell‐vertex finite volume method is described for the solution of the Navier–Stokes equations at high Reynolds numbers. The key idea is the elimination of the pressure term from the momentum equation by multiplying the momentum equation with the unit normal vector to a control volume boundary and integrating thereafter around this boundary. The resulting equations are expressed solely in terms of the velocity components. Thus any difficulties with pressure or vorticity boundary conditions are circumvented and the number of primary variables that need to be determined equals the number of space dimensions. The method is applied to both the steady and unsteady two‐dimensional lid‐driven cavity problem at Reynolds numbers up to 10000. Results are compared with those in the literature and show excellent agreement. Copyright © 2003 John Wiley & Sons, Ltd.
Author Owens, Robert G.
Sahin, Mehmet
Author_xml – sequence: 1
  givenname: Mehmet
  surname: Sahin
  fullname: Sahin, Mehmet
  organization: FSTI-ISE-LMF, Ecole Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland
– sequence: 2
  givenname: Robert G.
  surname: Owens
  fullname: Owens, Robert G.
  email: robert.owens@epfl.ch
  organization: FSTI-ISE-LMF, Ecole Polytechnique Fédérale de Lausanne, CH 1015 Lausanne, Switzerland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14742224$$DView record in Pascal Francis
BookMark eNp10Mtu1DAUBmALFYlpqXgFbxALlOJb7Am7MqUXaQRVVQRiYzm-MAbHjmzPlKx5cQJTdQHq6izOdy76D8FBTNEC8AKjE4wQeeOCOWGMPAELjDrRIMrpAVggInBDUIefgcNSviOEOrKkC_DrFMa0swG6bQgT9MMYvPYVOh99tXCXwnawcLB1kwxU49y1BtYE68bC4E1jst_ZCLXa-TrBMac-2KG5VrnCq7fw0n_bwBs7xRRMgXE79DZDF9LdPBD0NqjqUyzPwVOnQrHH9_UIfDp_f7u6bNYfL65Wp-tGUyJIw1BPlk4Q6zqBWt4uscaEI80M71DvFG5b1RrScyY45pawrrUccaUMparVnB6Bl_u9oyrzfZdV1L7IMftB5UliJhghhM2u2TudUynZOjkn8vfVmpUPEiP5J2k5Jy3npGf_6h__sPI_-Xov73yw02NMnq_P9vr-D1-q_fmgVf4huaCilZ8_XMjll5vu6zuykmf0NzZ_nfE
CODEN IJNFDW
CitedBy_id crossref_primary_10_1002_zamm_200900245
crossref_primary_10_1016_j_camwa_2017_01_024
crossref_primary_10_1016_j_camwa_2023_12_014
crossref_primary_10_1080_10618562_2010_539974
crossref_primary_10_1016_j_jnnfm_2012_11_006
crossref_primary_10_1016_j_cam_2012_08_014
crossref_primary_10_1080_15502287_2011_572113
crossref_primary_10_1002_fld_4786
crossref_primary_10_1016_j_jcp_2012_12_010
crossref_primary_10_1016_j_cam_2016_09_022
crossref_primary_10_1016_j_cma_2013_08_004
crossref_primary_10_1016_j_jnnfm_2004_08_002
crossref_primary_10_1016_j_jnnfm_2012_03_007
crossref_primary_10_1002_fld_1821
crossref_primary_10_1002_fld_4749
crossref_primary_10_1016_j_compfluid_2012_03_024
crossref_primary_10_1016_j_advengsoft_2016_05_010
crossref_primary_10_1016_j_finel_2017_11_011
crossref_primary_10_1017_jfm_2019_512
crossref_primary_10_1016_j_jcp_2012_10_043
crossref_primary_10_1016_j_jnnfm_2016_01_009
crossref_primary_10_1016_j_jnnfm_2016_03_001
crossref_primary_10_1016_j_apm_2012_10_034
crossref_primary_10_1016_j_cpc_2012_11_001
crossref_primary_10_1016_j_powtec_2013_11_047
crossref_primary_10_1016_j_ijheatfluidflow_2016_07_011
crossref_primary_10_1177_0958305X231215321
crossref_primary_10_1016_j_compfluid_2016_03_021
crossref_primary_10_1016_j_euromechflu_2025_204313
crossref_primary_10_1016_j_jcp_2010_07_030
crossref_primary_10_1016_j_jcp_2021_110412
crossref_primary_10_1016_j_apm_2020_01_057
crossref_primary_10_1016_j_enganabound_2014_11_035
crossref_primary_10_1002_fld_4992
crossref_primary_10_1002_fld_5289
crossref_primary_10_2514_1_J052884
crossref_primary_10_1002_fld_4279
crossref_primary_10_1016_j_ijheatfluidflow_2007_04_018
crossref_primary_10_1007_s00033_018_0933_x
crossref_primary_10_1016_j_jnnfm_2009_08_004
crossref_primary_10_1080_15502287_2024_2395996
crossref_primary_10_1016_j_camwa_2020_08_014
crossref_primary_10_1016_j_apm_2007_02_029
crossref_primary_10_1080_10618562_2016_1270449
crossref_primary_10_1016_j_compfluid_2010_09_006
crossref_primary_10_1108_HFF_01_2015_0020
crossref_primary_10_1016_j_jcp_2020_110005
crossref_primary_10_1108_HFF_12_2010_0196
crossref_primary_10_1016_j_enganabound_2023_05_013
crossref_primary_10_1088_1873_7005_ab7bcf
crossref_primary_10_4208_nmtma_2016_m1422
crossref_primary_10_1016_j_compfluid_2023_105897
crossref_primary_10_1016_j_jcp_2010_12_031
crossref_primary_10_1038_s41557_024_01665_z
crossref_primary_10_1016_j_euromechflu_2012_12_002
crossref_primary_10_1080_10407782_2014_894387
crossref_primary_10_1177_09544062231166825
crossref_primary_10_1088_1757_899X_577_1_012134
crossref_primary_10_3390_pr9091508
crossref_primary_10_1016_j_jtice_2014_01_007
crossref_primary_10_1002_fld_3665
crossref_primary_10_1016_j_jcp_2013_09_027
crossref_primary_10_1016_j_jcp_2009_01_003
crossref_primary_10_1016_j_enganabound_2021_06_015
crossref_primary_10_1134_S0081543808050088
crossref_primary_10_1002_nme_3184
crossref_primary_10_1016_j_amc_2024_128839
crossref_primary_10_1016_j_jfluidstructs_2018_09_007
crossref_primary_10_1108_HFF_06_2012_0136
crossref_primary_10_1016_j_compfluid_2015_02_009
crossref_primary_10_4028_www_scientific_net_AMM_592_594_1652
crossref_primary_10_1016_j_jcp_2018_10_047
crossref_primary_10_1016_j_jcp_2016_08_047
crossref_primary_10_1016_j_compfluid_2025_106812
crossref_primary_10_1002_fld_1759
crossref_primary_10_1002_nme_5509
crossref_primary_10_1088_1873_7005_ad56c5
crossref_primary_10_1108_HFF_06_2019_0519
crossref_primary_10_1108_HFF_08_2015_0320
crossref_primary_10_1016_j_apm_2009_02_009
crossref_primary_10_1002_fld_1035
crossref_primary_10_3390_app13020888
crossref_primary_10_1016_j_cam_2014_07_025
crossref_primary_10_1002_fld_533
crossref_primary_10_1590_S0104_66322013000400023
crossref_primary_10_1002_num_20236
crossref_primary_10_1016_j_enganabound_2019_06_004
crossref_primary_10_1080_10407790_2013_836052
crossref_primary_10_1016_j_euromechflu_2022_02_005
Cites_doi 10.1016/S0168-9274(99)00139-7
10.1016/0021-9991(91)90261-I
10.1002/fld.165
10.1016/0045-7930(94)90036-1
10.1016/0021-9991(82)90058-4
10.1016/S0377-0257(99)00073-7
10.1006/jcph.2001.6817
10.1016/0021-9991(90)90149-U
10.1016/0021-9991(86)90035-5
10.1002/fld.533
10.1002/(SICI)1097-0207(19991110)46:7<1127::AID-NME746>3.0.CO;2-G
10.1016/S0045-7825(98)00363-6
10.1090/S0025-5718-97-00886-7
10.1016/0045-7930(94)90003-5
10.1016/0045-7930(94)00017-S
10.1002/fld.164
10.1002/(SICI)1521-4001(199811)78:11<743::AID-ZAMM743>3.0.CO;2-I
10.1016/S0045-7825(00)00320-0
10.1017/CBO9780511574856.008
10.1137/S1064827596304034
10.1016/S0045-7930(97)00001-7
10.1515/9783112575406-030
10.1016/0021-9991(90)90204-E
10.1017/S0022112066000545
10.1007/s004660050274
10.1016/S0045-7930(96)00032-1
10.1002/(SICI)1097-0363(19971030)25:8<907::AID-FLD592>3.0.CO;2-T
10.1006/jcph.1998.5862
10.1016/0021-9991(88)90007-1
10.1006/jcph.1995.1103
10.1016/S0045-7825(99)00171-1
10.1017/S0001924000027810
10.1002/(SICI)1097-0363(20000229)32:4<439::AID-FLD946>3.0.CO;2-Y
10.1023/A:1011932500831
10.1016/0021-9991(82)90032-8
10.1016/0021-9991(87)90182-3
10.1146/annurev.fl.23.010191.002213
10.1017/S0022112097007866
10.1002/(SICI)1097-0363(19970228)24:4<375::AID-FLD499>3.0.CO;2-2
10.1002/fld.166
10.1016/S0045-7930(98)00002-4
10.1137/S1064827500373395
10.1016/S0045-7930(97)00004-2
10.1017/S0022112064000015
10.1016/0168-9274(91)90035-X
10.1002/fld.121
10.1051/m2an/1994280606991
ContentType Journal Article
Copyright Copyright © 2003 John Wiley & Sons, Ltd.
2003 INIST-CNRS
Copyright_xml – notice: Copyright © 2003 John Wiley & Sons, Ltd.
– notice: 2003 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
DOI 10.1002/fld.442
DatabaseName Istex
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1097-0363
EndPage 77
ExternalDocumentID 14742224
10_1002_fld_442
FLD442
ark_67375_WNG_8XR9ZB2C_D
Genre article
GrantInformation_xml – fundername: Swiss National Science Foundation
  funderid: 21‐61865.00
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
TUS
UB1
V2E
VOH
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~A~
~IA
~WT
AAHHS
ABTAH
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
RWS
WRC
AAYXX
CITATION
O8X
6TJ
ABEML
ACSCC
AGHNM
AI.
AMVHM
HF~
IQODW
M6O
PALCI
RIWAO
RJQFR
RYL
SAMSI
VH1
ID FETCH-LOGICAL-c3272-40b28f72ef97056581c1260c4d690bfa155a5d2b647616e2495e606aad33a5c63
IEDL.DBID DRFUL
ISICitedReferencesCount 126
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000182646300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0271-2091
IngestDate Mon Jul 21 09:15:12 EDT 2025
Sat Nov 29 06:13:08 EST 2025
Tue Nov 18 22:22:00 EST 2025
Wed Jan 22 16:25:22 EST 2025
Tue Nov 11 03:33:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Large Reynolds number
Streamlines
Computational fluid dynamics
Digital simulation
Vorticity
Velocity distribution
Unsteady flow
Incompressible fluid
Cavity flow
Mesh generation
Finite volume methods
Moving wall
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3272-40b28f72ef97056581c1260c4d690bfa155a5d2b647616e2495e606aad33a5c63
Notes Swiss National Science Foundation - No. 21-61865.00
ark:/67375/WNG-8XR9ZB2C-D
istex:9C59792226314A971C081F16F8D60C8A68C0F794
ArticleID:FLD442
PageCount 21
ParticipantIDs pascalfrancis_primary_14742224
crossref_citationtrail_10_1002_fld_442
crossref_primary_10_1002_fld_442
wiley_primary_10_1002_fld_442_FLD442
istex_primary_ark_67375_WNG_8XR9ZB2C_D
PublicationCentury 2000
PublicationDate 10 May 2003
PublicationDateYYYYMMDD 2003-05-10
PublicationDate_xml – month: 05
  year: 2003
  text: 10 May 2003
  day: 10
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in fluids
PublicationTitleAlternate Int. J. Numer. Meth. Fluids
PublicationYear 2003
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Gustafson K, Halasi K. Cavity flow dynamics at higher Reynolds number and higher aspect ratio. Journal of Computational Physics 1987; 70(2):271-283.
Mai-Duy N, Tran-Cong T. Numerical solution of Navier-Stokes equations using multiquadric radial basis function networks. International Journal for Numerical Methods in Fluids 2001; 37(1):65-86.
Moffatt HK. Viscous and resistive eddies near a sharp corner. Journal of Fluid Mechanics 1964; 18(1):1-18.
Barragy E, Carey GF. Stream function-vorticity driven cavity solution using p finite elements. Computers & Fluids 1997; 26(5):453-468.
Gatski TB, Grosch CE, Rose ME. A numerical study of the two-dimensional Navier-Stokes equations in vorticity-velocity variables. Journal of Computational Physics 1982; 48(1):1-22.
Goodrich JW, Gustafson K, Halasi K. Hopf bifurcation in the driven cavity. Journal of Computational Physics 1990; 90(1):219-261.
Gustafson K, Halasi K. Vortex dynamics of cavity flows. Journal of Computational Physics 1986; 64(2):279-319.
Burggraf OR. Analytical and numerical studies of the structure of steady separated flows. Journal of Fluid Mechanics 1966; 24(1):113-151.
Wright NG, Gaskell PH. An efficient multigrid approach to solving highly recirculating flows. Computers & Fluids 1995; 24(1):63-79.
Chang S, Haworth DC. Adaptive grid refinement using cell-level and global imbalances. International Journal for Numerical Methods in Fluids 1997; 24(4):375-392.
Hou S, Zou Q, Chen S, Doolen G, Cogley AC. Simulation of cavity flow by the lattice Boltzmann method. Journal of Computational Physics 1995; 118(2):329-347.
Xue SC, Phan-Thien N, Tanner RI. Fully three-dimensional, time-dependent numerical simulations of Newtonian and viscoelastic flows in a confined cylinder-Part I. Method and steady flows. Journal of Non-Newtonian Fluid Mechanics 1999; 87(2-3):337-367.
Meister A, Oevermann M. An implicit finite volume approach of the k-εturbulence model on unstructured grids. Zeitschrift Fur Angewandte Mathematik und Mechanik 1998; 78(11):743-757.
Botella O. On the solution of the Navier-Stokes equations using Chebyshev projection schemes with third-order accuracy in time. Computers & Fluids 1997; 26(2):107-116.
Davies C, Carpenter PW. A novel velocity-vorticity formulation of the Navier-Stokes equations with applications to boundary layer disturbance evolution. Journal of Computational Physics 2001; 172(1):119-165.
Deng GB, Piquet J, Queutey P, Visonneau M. Incompressible-flow calculations with a consistent physical interpolation finite-volume approach. Computers & Fluids 1994; 23(8):1029-1047.
Shen J. Hopf bifurcation of the unsteady regularized driven cavity flow. Journal of Computational Physics 1991; 95(1):228-245.
Botella O, Peyret R. Computing singular solutions of the Navier-Stokes equations with the Chebyshev-collocation method. International Journal for Numerical Methods in Fluids 2001; 36(2):125-163.
Pozrikidis C. Numerical investigation of the effect of surfactants on the stability and rheology of emulsions and foam. Journal of Engineering Mathematics 2001; 41(2-3):237-258.
Gresho PM. Incompressible fluid dynamics: Some fundamental formulation issues. Annual Review of Fluid Mechanics 1991; 23:413-453.
Morton KW, Stynes M. An analysis of the cell vertex method. RAIRO-Modél. Math. Anal. Numér. 1994; 28(6):699-724.
Aydin M, Fenner RT. Boundary element analysis of driven cavity flow for low and moderate Reynolds numbers. International Journal for Numerical Methods in Fluids 2001; 37(1):45-64.
Pozrikidis C. Numerical studies of cusp formation at fluid interfaces in Stokes flow. Journal of Fluid Mechanics 1998; 357:29-57.
Sahin M, Owens RG. A novel fully-implicit finite volume method applied to the lid-driven cavity problem Part II. Linear stability analysis. International Journal for Numerical Methods in Fluids 2003; 42:79-88.
Bruneau C-H, Jouron C. An efficient scheme for solving steady incompressible Navier-Stokes equations. Journal of Computational Physics 1990; 89(2):389-413.
Hansen EB, Kelmanson MA. An integral equation justification of the boundary conditions of the driven cavity problem. Computers & Fluids 1994; 23(1):225-240.
Soh WY, Goodrich JW. Unsteady solution of incompressible Navier-Stokes equations. Journal of Computational Physics 1988; 79(1):113-134.
Kjellgren P. A semi-implicit fractional step finite element method for viscous incompressible flows. Computational Mechanics 1997; 20:541-550.
Botella O, Peyret R. Benchmark spectral results on the lid-driven cavity flow. Computers & Fluids 1998; 27(4):421-433.
Chang RY, Yang WH. Numerical simulation of mold filling in injection molding using a three-dimensional finite volume approach. International Journal for Numerical Methods in Fluids 2001; 37(2):125-148.
Kupferman R. A central-difference scheme for a pure stream function formulation of incompressible viscous flow. SIAM Journal on Scientific Computing 2001; 23(1):1-18.
Guo DX. A second order scheme for the Navier-Stokes equations: application to the driven-cavity problem. Applied Numerical Mathematics 2000; 35(4):307-322.
Morton KW, Stynes M, Suli E. Analysis of a cell-vertex finite volume method for convection-diffusion problems. Mathematics of Computation 1997; 66(220):1389-1406.
Liu CH, Leung DYC. Development of a finite element solution for the unsteady Navier-Stokes equations using projection method and fractional-θ-scheme. Computer Methods in Applied Mechanics and Engineering 2001; 190(32-33):4301-4317.
Xue SC, Tanner RI, Phan-Thien N. Three-dimensional numerical simulations of viscoelastic flows-predictability and accuracy. Computers Methods in Applied Mechanics and Engineering 1999; 180(3-4):305-331.
Meister A. Comparison of different Krylov subspace methods embedded in an implicit finite volume scheme for the computation of viscous and inviscid flow fields on unstructured grids. Journal of Computational Physics 1998; 140(2):311-345.
Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics 1982; 48(3):387-411.
Knoll DA, McHugh PR. Enhanced nonlinear iterative techniques applied to a nonequilibrium plasma flow. SIAM Journal on Scientific Computing 1998; 19(1):291-301.
Allievi A, Bermejo R. Finite element modified method of characteristics for the Navier-Stokes equations. International Journal for Numerical Methods in Fluids 2000; 32(4):439-464.
Sedaghat A, Ackroyd JAD, Wood NJ. Turbulence modelling for supercritical flows including examples with passive shock control. Aeronautical Journal 1999; 103(1020):113-125.
Henderson RD. Dynamic refinement algorithms for spectral element methods. Computer Methods in Applied Mechanics and Engineering 1999; 175(3-4):395-411.
Grigoriev MM, Dargush GF. A poly-region boundary element method for incompressible viscous fluid flows. International Journal for Numerical Methods in Engineering 1999; 46(7):1127-1158.
Gatski TB. Review of incompressible fluid flow computations using the vorticity-velocity formulation. Applied Numerical Mathematics 1991; 7(3):227-239.
Calhoon WH, Roach RL. A naturally upwinded conservative procedure for the incompressible Navier-Stokes equations on non-staggered grids. Computers & Fluids 1997; 26(5):525-545.
Grigoriev MM, Fafurin AV. A boundary element method for steady viscous fluid flow using penalty function formulation. International Journal for Numerical Methods in Fluids 1997; 25(8):907-929.
1998; 27
1997; 66
1997; 20
1987; 70
1997; 26
1997; 25
1997; 24
1991; 95
1999; 46
1994; 23
1995; 118
1988; 79
1999; 87
1998; 357
1999; 103
1993
2003
1994; 28
2001; 23
1991; 7
2001; 41
1982; 48
2001; 172
1990; 89
1998; 19
1964; 18
1991; 23
1986; 64
2001; 190
2000; 35
2000; 32
1995; 24
1999; 180
1999; 175
1962
2001; 37
1966; 24
1990; 90
2001; 36
1998; 78
1998; 140
2003; 42
Taylor GI (e_1_2_1_30_2) 1962
e_1_2_1_40_2
e_1_2_1_22_2
e_1_2_1_45_2
e_1_2_1_23_2
e_1_2_1_44_2
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_42_2
e_1_2_1_26_2
e_1_2_1_49_2
e_1_2_1_27_2
e_1_2_1_48_2
e_1_2_1_24_2
e_1_2_1_47_2
e_1_2_1_25_2
e_1_2_1_46_2
Morton KW (e_1_2_1_43_2) 1994; 28
e_1_2_1_28_2
e_1_2_1_29_2
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_2_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_16_2
e_1_2_1_37_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_19_2
Sedaghat A (e_1_2_1_41_2) 1999; 103
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
e_1_2_1_39_2
References_xml – reference: Chang S, Haworth DC. Adaptive grid refinement using cell-level and global imbalances. International Journal for Numerical Methods in Fluids 1997; 24(4):375-392.
– reference: Calhoon WH, Roach RL. A naturally upwinded conservative procedure for the incompressible Navier-Stokes equations on non-staggered grids. Computers & Fluids 1997; 26(5):525-545.
– reference: Henderson RD. Dynamic refinement algorithms for spectral element methods. Computer Methods in Applied Mechanics and Engineering 1999; 175(3-4):395-411.
– reference: Ghia U, Ghia KN, Shin CT. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics 1982; 48(3):387-411.
– reference: Meister A, Oevermann M. An implicit finite volume approach of the k-εturbulence model on unstructured grids. Zeitschrift Fur Angewandte Mathematik und Mechanik 1998; 78(11):743-757.
– reference: Botella O, Peyret R. Benchmark spectral results on the lid-driven cavity flow. Computers & Fluids 1998; 27(4):421-433.
– reference: Grigoriev MM, Fafurin AV. A boundary element method for steady viscous fluid flow using penalty function formulation. International Journal for Numerical Methods in Fluids 1997; 25(8):907-929.
– reference: Chang RY, Yang WH. Numerical simulation of mold filling in injection molding using a three-dimensional finite volume approach. International Journal for Numerical Methods in Fluids 2001; 37(2):125-148.
– reference: Bruneau C-H, Jouron C. An efficient scheme for solving steady incompressible Navier-Stokes equations. Journal of Computational Physics 1990; 89(2):389-413.
– reference: Hansen EB, Kelmanson MA. An integral equation justification of the boundary conditions of the driven cavity problem. Computers & Fluids 1994; 23(1):225-240.
– reference: Gustafson K, Halasi K. Vortex dynamics of cavity flows. Journal of Computational Physics 1986; 64(2):279-319.
– reference: Burggraf OR. Analytical and numerical studies of the structure of steady separated flows. Journal of Fluid Mechanics 1966; 24(1):113-151.
– reference: Kjellgren P. A semi-implicit fractional step finite element method for viscous incompressible flows. Computational Mechanics 1997; 20:541-550.
– reference: Sahin M, Owens RG. A novel fully-implicit finite volume method applied to the lid-driven cavity problem Part II. Linear stability analysis. International Journal for Numerical Methods in Fluids 2003; 42:79-88.
– reference: Guo DX. A second order scheme for the Navier-Stokes equations: application to the driven-cavity problem. Applied Numerical Mathematics 2000; 35(4):307-322.
– reference: Shen J. Hopf bifurcation of the unsteady regularized driven cavity flow. Journal of Computational Physics 1991; 95(1):228-245.
– reference: Sedaghat A, Ackroyd JAD, Wood NJ. Turbulence modelling for supercritical flows including examples with passive shock control. Aeronautical Journal 1999; 103(1020):113-125.
– reference: Meister A. Comparison of different Krylov subspace methods embedded in an implicit finite volume scheme for the computation of viscous and inviscid flow fields on unstructured grids. Journal of Computational Physics 1998; 140(2):311-345.
– reference: Botella O, Peyret R. Computing singular solutions of the Navier-Stokes equations with the Chebyshev-collocation method. International Journal for Numerical Methods in Fluids 2001; 36(2):125-163.
– reference: Gresho PM. Incompressible fluid dynamics: Some fundamental formulation issues. Annual Review of Fluid Mechanics 1991; 23:413-453.
– reference: Pozrikidis C. Numerical investigation of the effect of surfactants on the stability and rheology of emulsions and foam. Journal of Engineering Mathematics 2001; 41(2-3):237-258.
– reference: Hou S, Zou Q, Chen S, Doolen G, Cogley AC. Simulation of cavity flow by the lattice Boltzmann method. Journal of Computational Physics 1995; 118(2):329-347.
– reference: Deng GB, Piquet J, Queutey P, Visonneau M. Incompressible-flow calculations with a consistent physical interpolation finite-volume approach. Computers & Fluids 1994; 23(8):1029-1047.
– reference: Morton KW, Stynes M, Suli E. Analysis of a cell-vertex finite volume method for convection-diffusion problems. Mathematics of Computation 1997; 66(220):1389-1406.
– reference: Knoll DA, McHugh PR. Enhanced nonlinear iterative techniques applied to a nonequilibrium plasma flow. SIAM Journal on Scientific Computing 1998; 19(1):291-301.
– reference: Aydin M, Fenner RT. Boundary element analysis of driven cavity flow for low and moderate Reynolds numbers. International Journal for Numerical Methods in Fluids 2001; 37(1):45-64.
– reference: Moffatt HK. Viscous and resistive eddies near a sharp corner. Journal of Fluid Mechanics 1964; 18(1):1-18.
– reference: Goodrich JW, Gustafson K, Halasi K. Hopf bifurcation in the driven cavity. Journal of Computational Physics 1990; 90(1):219-261.
– reference: Xue SC, Phan-Thien N, Tanner RI. Fully three-dimensional, time-dependent numerical simulations of Newtonian and viscoelastic flows in a confined cylinder-Part I. Method and steady flows. Journal of Non-Newtonian Fluid Mechanics 1999; 87(2-3):337-367.
– reference: Allievi A, Bermejo R. Finite element modified method of characteristics for the Navier-Stokes equations. International Journal for Numerical Methods in Fluids 2000; 32(4):439-464.
– reference: Pozrikidis C. Numerical studies of cusp formation at fluid interfaces in Stokes flow. Journal of Fluid Mechanics 1998; 357:29-57.
– reference: Gustafson K, Halasi K. Cavity flow dynamics at higher Reynolds number and higher aspect ratio. Journal of Computational Physics 1987; 70(2):271-283.
– reference: Botella O. On the solution of the Navier-Stokes equations using Chebyshev projection schemes with third-order accuracy in time. Computers & Fluids 1997; 26(2):107-116.
– reference: Kupferman R. A central-difference scheme for a pure stream function formulation of incompressible viscous flow. SIAM Journal on Scientific Computing 2001; 23(1):1-18.
– reference: Gatski TB, Grosch CE, Rose ME. A numerical study of the two-dimensional Navier-Stokes equations in vorticity-velocity variables. Journal of Computational Physics 1982; 48(1):1-22.
– reference: Liu CH, Leung DYC. Development of a finite element solution for the unsteady Navier-Stokes equations using projection method and fractional-θ-scheme. Computer Methods in Applied Mechanics and Engineering 2001; 190(32-33):4301-4317.
– reference: Mai-Duy N, Tran-Cong T. Numerical solution of Navier-Stokes equations using multiquadric radial basis function networks. International Journal for Numerical Methods in Fluids 2001; 37(1):65-86.
– reference: Xue SC, Tanner RI, Phan-Thien N. Three-dimensional numerical simulations of viscoelastic flows-predictability and accuracy. Computers Methods in Applied Mechanics and Engineering 1999; 180(3-4):305-331.
– reference: Soh WY, Goodrich JW. Unsteady solution of incompressible Navier-Stokes equations. Journal of Computational Physics 1988; 79(1):113-134.
– reference: Davies C, Carpenter PW. A novel velocity-vorticity formulation of the Navier-Stokes equations with applications to boundary layer disturbance evolution. Journal of Computational Physics 2001; 172(1):119-165.
– reference: Morton KW, Stynes M. An analysis of the cell vertex method. RAIRO-Modél. Math. Anal. Numér. 1994; 28(6):699-724.
– reference: Wright NG, Gaskell PH. An efficient multigrid approach to solving highly recirculating flows. Computers & Fluids 1995; 24(1):63-79.
– reference: Gatski TB. Review of incompressible fluid flow computations using the vorticity-velocity formulation. Applied Numerical Mathematics 1991; 7(3):227-239.
– reference: Grigoriev MM, Dargush GF. A poly-region boundary element method for incompressible viscous fluid flows. International Journal for Numerical Methods in Engineering 1999; 46(7):1127-1158.
– reference: Barragy E, Carey GF. Stream function-vorticity driven cavity solution using p finite elements. Computers & Fluids 1997; 26(5):453-468.
– volume: 37
  start-page: 65
  issue: 1
  year: 2001
  end-page: 86
  article-title: Numerical solution of Navier–Stokes equations using multiquadric radial basis function networks
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 23
  start-page: 1029
  issue: 8
  year: 1994
  end-page: 1047
  article-title: Incompressible‐flow calculations with a consistent physical interpolation finite‐volume approach
  publication-title: Computers & Fluids
– volume: 190
  start-page: 4301
  issue: 32–33
  year: 2001
  end-page: 4317
  article-title: Development of a finite element solution for the unsteady Navier–Stokes equations using projection method and fractional‐θ‐scheme
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 175
  start-page: 395
  issue: 3–4
  year: 1999
  end-page: 411
  article-title: Dynamic refinement algorithms for spectral element methods
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 46
  start-page: 1127
  issue: 7
  year: 1999
  end-page: 1158
  article-title: A poly‐region boundary element method for incompressible viscous fluid flows
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 172
  start-page: 119
  issue: 1
  year: 2001
  end-page: 165
  article-title: A novel velocity–vorticity formulation of the Navier–Stokes equations with applications to boundary layer disturbance evolution
  publication-title: Journal of Computational Physics
– volume: 95
  start-page: 228
  issue: 1
  year: 1991
  end-page: 245
  article-title: Hopf bifurcation of the unsteady regularized driven cavity flow
  publication-title: Journal of Computational Physics
– volume: 27
  start-page: 421
  issue: 4
  year: 1998
  end-page: 433
  article-title: Benchmark spectral results on the lid‐driven cavity flow
  publication-title: Computers & Fluids
– volume: 32
  start-page: 439
  issue: 4
  year: 2000
  end-page: 464
  article-title: Finite element modified method of characteristics for the Navier–Stokes equations
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 20
  start-page: 541
  year: 1997
  end-page: 550
  article-title: A semi‐implicit fractional step finite element method for viscous incompressible flows
  publication-title: Computational Mechanics
– volume: 19
  start-page: 291
  issue: 1
  year: 1998
  end-page: 301
  article-title: Enhanced nonlinear iterative techniques applied to a nonequilibrium plasma flow
  publication-title: SIAM Journal on Scientific Computing
– year: 2003
– volume: 26
  start-page: 107
  issue: 2
  year: 1997
  end-page: 116
  article-title: On the solution of the Navier–Stokes equations using Chebyshev projection schemes with third‐order accuracy in time
  publication-title: Computers & Fluids
– volume: 64
  start-page: 279
  issue: 2
  year: 1986
  end-page: 319
  article-title: Vortex dynamics of cavity flows
  publication-title: Journal of Computational Physics
– volume: 103
  start-page: 113
  issue: 1020
  year: 1999
  end-page: 125
  article-title: Turbulence modelling for supercritical flows including examples with passive shock control
  publication-title: Aeronautical Journal
– volume: 89
  start-page: 389
  issue: 2
  year: 1990
  end-page: 413
  article-title: An efficient scheme for solving steady incompressible Navier–Stokes equations
  publication-title: Journal of Computational Physics
– volume: 90
  start-page: 219
  issue: 1
  year: 1990
  end-page: 261
  article-title: Hopf bifurcation in the driven cavity
  publication-title: Journal of Computational Physics
– volume: 36
  start-page: 125
  issue: 2
  year: 2001
  end-page: 163
  article-title: Computing singular solutions of the Navier–Stokes equations with the Chebyshev‐collocation method
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 79
  start-page: 113
  issue: 1
  year: 1988
  end-page: 134
  article-title: Unsteady solution of incompressible Navier–Stokes equations
  publication-title: Journal of Computational Physics
– volume: 87
  start-page: 337
  issue: 2–3
  year: 1999
  end-page: 367
  article-title: Fully three‐dimensional, time‐dependent numerical simulations of Newtonian and viscoelastic flows in a confined cylinder—Part I. Method and steady flows
  publication-title: Journal of Non‐Newtonian Fluid Mechanics
– volume: 48
  start-page: 387
  issue: 3
  year: 1982
  end-page: 411
  article-title: High‐Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method
  publication-title: Journal of Computational Physics
– volume: 118
  start-page: 329
  issue: 2
  year: 1995
  end-page: 347
  article-title: Simulation of cavity flow by the lattice Boltzmann method
  publication-title: Journal of Computational Physics
– volume: 26
  start-page: 453
  issue: 5
  year: 1997
  end-page: 468
  article-title: Stream function‐vorticity driven cavity solution using finite elements
  publication-title: Computers & Fluids
– volume: 23
  start-page: 225
  issue: 1
  year: 1994
  end-page: 240
  article-title: An integral equation justification of the boundary conditions of the driven cavity problem
  publication-title: Computers & Fluids
– volume: 18
  start-page: 1
  issue: 1
  year: 1964
  end-page: 18
  article-title: Viscous and resistive eddies near a sharp corner
  publication-title: Journal of Fluid Mechanics
– volume: 23
  start-page: 413
  year: 1991
  end-page: 453
  article-title: Incompressible fluid dynamics: Some fundamental formulation issues
  publication-title: Annual Review of Fluid Mechanics
– volume: 48
  start-page: 1
  issue: 1
  year: 1982
  end-page: 22
  article-title: A numerical study of the two‐dimensional Navier–Stokes equations in vorticity–velocity variables
  publication-title: Journal of Computational Physics
– volume: 180
  start-page: 305
  issue: 3–4
  year: 1999
  end-page: 331
  article-title: Three‐dimensional numerical simulations of viscoelastic flows—predictability and accuracy
  publication-title: Computers Methods in Applied Mechanics and Engineering
– volume: 26
  start-page: 525
  issue: 5
  year: 1997
  end-page: 545
  article-title: A naturally upwinded conservative procedure for the incompressible Navier–Stokes equations on non‐staggered grids
  publication-title: Computers & Fluids
– start-page: 183
  year: 1993
  end-page: 201
– volume: 140
  start-page: 311
  issue: 2
  year: 1998
  end-page: 345
  article-title: Comparison of different Krylov subspace methods embedded in an implicit finite volume scheme for the computation of viscous and inviscid flow fields on unstructured grids
  publication-title: Journal of Computational Physics
– volume: 35
  start-page: 307
  issue: 4
  year: 2000
  end-page: 322
  article-title: A second order scheme for the Navier–Stokes equations: application to the driven‐cavity problem
  publication-title: Applied Numerical Mathematics
– volume: 37
  start-page: 125
  issue: 2
  year: 2001
  end-page: 148
  article-title: Numerical simulation of mold filling in injection molding using a three‐dimensional finite volume approach
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 42
  start-page: 79
  year: 2003
  end-page: 88
  article-title: A novel fully‐implicit finite volume method applied to the lid‐driven cavity problem Part II. Linear stability analysis
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 24
  start-page: 113
  issue: 1
  year: 1966
  end-page: 151
  article-title: Analytical and numerical studies of the structure of steady separated flows
  publication-title: Journal of Fluid Mechanics
– volume: 24
  start-page: 63
  issue: 1
  year: 1995
  end-page: 79
  article-title: An efficient multigrid approach to solving highly recirculating flows
  publication-title: Computers & Fluids
– volume: 24
  start-page: 375
  issue: 4
  year: 1997
  end-page: 392
  article-title: Adaptive grid refinement using cell‐level and global imbalances
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 70
  start-page: 271
  issue: 2
  year: 1987
  end-page: 283
  article-title: Cavity flow dynamics at higher Reynolds number and higher aspect ratio
  publication-title: Journal of Computational Physics
– volume: 37
  start-page: 45
  issue: 1
  year: 2001
  end-page: 64
  article-title: Boundary element analysis of driven cavity flow for low and moderate Reynolds numbers
  publication-title: International Journal for Numerical Methods in Fluids
– start-page: 313
  year: 1962
  end-page: 315
– volume: 7
  start-page: 227
  issue: 3
  year: 1991
  end-page: 239
  article-title: Review of incompressible fluid flow computations using the vorticity–velocity formulation
  publication-title: Applied Numerical Mathematics
– volume: 357
  start-page: 29
  year: 1998
  end-page: 57
  article-title: Numerical studies of cusp formation at fluid interfaces in Stokes flow
  publication-title: Journal of Fluid Mechanics
– volume: 23
  start-page: 1
  issue: 1
  year: 2001
  end-page: 18
  article-title: A central‐difference scheme for a pure stream function formulation of incompressible viscous flow
  publication-title: SIAM Journal on Scientific Computing
– volume: 28
  start-page: 699
  issue: 6
  year: 1994
  end-page: 724
  article-title: An analysis of the cell vertex method
  publication-title: RAIRO—Modél. Math. Anal. Numér.
– volume: 41
  start-page: 237
  issue: 2–3
  year: 2001
  end-page: 258
  article-title: Numerical investigation of the effect of surfactants on the stability and rheology of emulsions and foam
  publication-title: Journal of Engineering Mathematics
– volume: 66
  start-page: 1389
  issue: 220
  year: 1997
  end-page: 1406
  article-title: Analysis of a cell‐vertex finite volume method for convection–diffusion problems
  publication-title: Mathematics of Computation
– volume: 25
  start-page: 907
  issue: 8
  year: 1997
  end-page: 929
  article-title: A boundary element method for steady viscous fluid flow using penalty function formulation
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 78
  start-page: 743
  issue: 11
  year: 1998
  end-page: 757
  article-title: An implicit finite volume approach of the k‐εturbulence model on unstructured grids
  publication-title: Zeitschrift Fur Angewandte Mathematik und Mechanik
– ident: e_1_2_1_10_2
  doi: 10.1016/S0168-9274(99)00139-7
– ident: e_1_2_1_22_2
  doi: 10.1016/0021-9991(91)90261-I
– ident: e_1_2_1_20_2
  doi: 10.1002/fld.165
– ident: e_1_2_1_31_2
  doi: 10.1016/0045-7930(94)90036-1
– ident: e_1_2_1_4_2
  doi: 10.1016/0021-9991(82)90058-4
– ident: e_1_2_1_38_2
  doi: 10.1016/S0377-0257(99)00073-7
– ident: e_1_2_1_32_2
  doi: 10.1006/jcph.2001.6817
– ident: e_1_2_1_47_2
  doi: 10.1016/0021-9991(90)90149-U
– ident: e_1_2_1_5_2
  doi: 10.1016/0021-9991(86)90035-5
– ident: e_1_2_1_45_2
  doi: 10.1002/fld.533
– ident: e_1_2_1_19_2
  doi: 10.1002/(SICI)1097-0207(19991110)46:7<1127::AID-NME746>3.0.CO;2-G
– ident: e_1_2_1_26_2
  doi: 10.1016/S0045-7825(98)00363-6
– ident: e_1_2_1_44_2
  doi: 10.1090/S0025-5718-97-00886-7
– ident: e_1_2_1_48_2
  doi: 10.1016/0045-7930(94)90003-5
– ident: e_1_2_1_16_2
  doi: 10.1016/0045-7930(94)00017-S
– ident: e_1_2_1_17_2
  doi: 10.1002/fld.164
– ident: e_1_2_1_40_2
  doi: 10.1002/(SICI)1521-4001(199811)78:11<743::AID-ZAMM743>3.0.CO;2-I
– ident: e_1_2_1_13_2
  doi: 10.1016/S0045-7825(00)00320-0
– ident: e_1_2_1_46_2
  doi: 10.1017/CBO9780511574856.008
– ident: e_1_2_1_49_2
  doi: 10.1137/S1064827596304034
– ident: e_1_2_1_14_2
  doi: 10.1016/S0045-7930(97)00001-7
– start-page: 313
  volume-title: Miszellaneen der Angewandten Mechanik (Fetschrift Walter Tollmein)
  year: 1962
  ident: e_1_2_1_30_2
  doi: 10.1515/9783112575406-030
– ident: e_1_2_1_8_2
  doi: 10.1016/0021-9991(90)90204-E
– ident: e_1_2_1_2_2
  doi: 10.1017/S0022112066000545
– ident: e_1_2_1_12_2
  doi: 10.1007/s004660050274
– ident: e_1_2_1_24_2
  doi: 10.1016/S0045-7930(96)00032-1
– ident: e_1_2_1_18_2
  doi: 10.1002/(SICI)1097-0363(19971030)25:8<907::AID-FLD592>3.0.CO;2-T
– ident: e_1_2_1_42_2
  doi: 10.1006/jcph.1998.5862
– ident: e_1_2_1_7_2
  doi: 10.1016/0021-9991(88)90007-1
– ident: e_1_2_1_21_2
  doi: 10.1006/jcph.1995.1103
– ident: e_1_2_1_39_2
  doi: 10.1016/S0045-7825(99)00171-1
– volume: 103
  start-page: 113
  issue: 1020
  year: 1999
  ident: e_1_2_1_41_2
  article-title: Turbulence modelling for supercritical flows including examples with passive shock control
  publication-title: Aeronautical Journal
  doi: 10.1017/S0001924000027810
– ident: e_1_2_1_11_2
  doi: 10.1002/(SICI)1097-0363(20000229)32:4<439::AID-FLD946>3.0.CO;2-Y
– ident: e_1_2_1_35_2
  doi: 10.1023/A:1011932500831
– ident: e_1_2_1_3_2
  doi: 10.1016/0021-9991(82)90032-8
– ident: e_1_2_1_6_2
  doi: 10.1016/0021-9991(87)90182-3
– ident: e_1_2_1_34_2
  doi: 10.1146/annurev.fl.23.010191.002213
– ident: e_1_2_1_36_2
  doi: 10.1017/S0022112097007866
– ident: e_1_2_1_15_2
  doi: 10.1002/(SICI)1097-0363(19970228)24:4<375::AID-FLD499>3.0.CO;2-2
– ident: e_1_2_1_23_2
– ident: e_1_2_1_37_2
  doi: 10.1002/fld.166
– ident: e_1_2_1_27_2
  doi: 10.1016/S0045-7930(98)00002-4
– ident: e_1_2_1_9_2
  doi: 10.1137/S1064827500373395
– ident: e_1_2_1_25_2
  doi: 10.1016/S0045-7930(97)00004-2
– ident: e_1_2_1_29_2
  doi: 10.1017/S0022112064000015
– ident: e_1_2_1_33_2
  doi: 10.1016/0168-9274(91)90035-X
– ident: e_1_2_1_28_2
  doi: 10.1002/fld.121
– volume: 28
  start-page: 699
  issue: 6
  year: 1994
  ident: e_1_2_1_43_2
  article-title: An analysis of the cell vertex method
  publication-title: RAIRO—Modél. Math. Anal. Numér.
  doi: 10.1051/m2an/1994280606991
SSID ssj0009283
Score 2.0661259
Snippet A novel implicit cell‐vertex finite volume method is described for the solution of the Navier–Stokes equations at high Reynolds numbers. The key idea is the...
SourceID pascalfrancis
crossref
wiley
istex
SourceType Index Database
Enrichment Source
Publisher
StartPage 57
SubjectTerms Computational methods in fluid dynamics
direct solver
Exact sciences and technology
Fluid dynamics
Fundamental areas of phenomenology (including applications)
high Reynolds numbers
implicit finite volume methods
Laminar flows
Laminar flows in cavities
lid-driven cavity flow
Physics
Title A novel fully implicit finite volume method applied to the lid-driven cavity problem-Part I: High Reynolds number flow calculations
URI https://api.istex.fr/ark:/67375/WNG-8XR9ZB2C-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Ffld.442
Volume 42
WOSCitedRecordID wos000182646300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0363
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009283
  issn: 0271-2091
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLZQywEODAaIDpjeYdotrHadOOE2VgpIVTVVDCoukeMfUkSUoKYb7LYbVw78hftLeI5NuwohIXHKIbYTPT8_f896_j5CDnDPNIpaFiWJHEZcimGUGsdAm4lYqyKTtJNO-DAVs1m6WGSnN6S-PD_E-sDNrYwuXrsFLov2aEMaaiv9gnOMvn2GXst7pD-eT86mG8Zd5jk4maDoChn1N2Zd56PQdWsr6jurfnOlkbJF61gva7ENWbs9Z7LzH397n9wLQBOOvWc8ILdMvUt2AuiEsKTbXXL3BiPhQ_L9GOrmwlTgjuUvoezqzcsV2NJhU_CxDLzsNMgw2KoBhJFQlfr66odeuvgJSjpRCgh6NddXP0_RR-HdS3CFJTA3l3VT6Ra8IAnYqvmKXSoVxMTaR-Rs8vr9ydsoaDVEasQEwzS0YKkVzNhMIKaKU6oopkqKa0y_CysRtshYsyLhIqGJcYrXBnMnKfVoJGOVjB6TXt3U5gkBZo1KMGxkaVFwO1SF1oqpgiqWaSqZHZDD39OWq0Bk7vQ0qtxTMLMcjZ2jsQcE1g2_eO6OP5scdvO-fi-Xn12pm4jzj7M3ebqYZ59esZN8PCD7W46xGZALd4rGB-Sgm_-_fSmfTMf42Pu3Zk_Jna5qsKOJfUZ6q-W5eU5uq4tV2S73g6v_Amv2Bek
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH5CLRJwYDBAlB_jHabdwmo3iRNuY6VsIlRTtUHFJXL8Q4qIEtSUwW67ceXAX7i_BDs2LRVCQuKUQ2wnen5-_p71_H0Au2bPVIJoGsQxHwYhZ8MgUZaBNmWRFEXKSSed8C5j02kyn6cnvqrS3oVx_BCrAze7Mrp4bRe4PZDeX7OG6ko-D0MTfvuhcaKoB_3xbHKWrSl3qSPhpIwYX0iJuzJrO-_7rht7Ud-a9autjeStMY92uhabmLXbdCZb__O7d-C2h5p44HzjLlxT9TZsediJflG323DrN07Ce_DtAOvmXFVoB77Asqs4L5eoS4tO0UUzdMLTyP1gywYNkMSqlFeX3-XCRlAU3MpSoFesubr8cWK8FI9foC0twZm6qJtKtugkSVBXzRfTpRJeTqy9D2eTV6eHR4FXawjEiDJqEtGCJppRpVNmUFWUEEFMsiRCaRLwQnMDXHgkaRGHLCaxsprXymRPnMvRiEciHj2AXt3U6iEg1UrEJnCkSVGEeigKKQUVBRE0lYRTPYC9X_OWC09lbhU1qtyRMNPcGDs3xh4Arhp-cuwdfzbZ6yZ-9Z4vPtpiNxbl76ev82Q-Sz-8pIf5eAA7G56xHjBk9hwtHMBu5wB_-1I-ycbm8ejfmj2DG0enb7M8O56-eQw3uxrCjjT2CfSWi8_qKVwX58uyXex4v_8JBRIJ2Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFLbQihAcGAwQHTDeYdotrHaTOOY2VgITVVVVDCouluMfUkSUTE032G03rhz4C_eXYMempUJISJxyiO1Ez-89v_f0_H0I7dszU0tsSJSmYhDFgg6iTDsEWkYTJQsmcEed8GFMJ5NsPmfT0FXp7sJ4fIhVwc1ZRuevnYHrM2UO16ihplIv4ti6316csNQaZW80y0_Ha8hd4kE4CcVWFxj2V2bd5MMwdeMs6jmxfnW9kaK14jGe12IzZu0OnXz7f373HrobQk048rpxH93Q9Q7aDmEnBKNud9Cd3zAJH6BvR1A3F7oCV5i_hLLrOC-XYEoXnYL3ZuCJp0GExZYN2EASqlJdX31XC-dBQQpHSwGBseb66sfUaimcvATXWgIzfVk3lWrBU5KAqZovdkolA51Y-xCd5q_fH7-NAltDJIeEEpuIFiQzlGjDqI2qkgxLbJMlGSubgBdG2MBFJIoUaUxTnGrHea1t9iSEGg5FItPhI7RVN7V-jIAYLVPrOFhWFLEZyEIpSWSBJWEKC2L66ODXvnEZoMwdo0bFPQgz4VbY3Aq7j2A18Myjd_w55KDb-NV7sfjsmt1owj9O3vBsPmOfXpFjPuqjvQ3NWC8YU1dHi_tov1OAv32J5-ORfez-27Dn6NZ0lPPxyeTdE3S7ayHsMGOfoq3l4lw_QzflxbJsF3tB7X8ChE0JVA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+fully+implicit+finite+volume+method+applied+to+the+lid-driven+cavity+problem-Part+I%3A+High+Reynolds+number+flow+calculations&rft.jtitle=International+journal+for+numerical+methods+in+fluids&rft.au=Sahin%2C+Mehmet&rft.au=Owens%2C+Robert+G.&rft.date=2003-05-10&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0271-2091&rft.eissn=1097-0363&rft.volume=42&rft.issue=1&rft.spage=57&rft.epage=77&rft_id=info:doi/10.1002%2Ffld.442&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_8XR9ZB2C_D
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0271-2091&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0271-2091&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0271-2091&client=summon