New benchmark problems for verification of the curve‐to‐surface contact algorithm based on the generalized Euler–Eytelwein problem

Development of the numerical contact algorithms for finite element method usually concerns convergence, mesh dependency, etc. Verification of the numerical contact algorithm usually includes only a few cases due to a limited number of available analytic solutions (e.g., the Hertz solution for cylind...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering Jg. 123; H. 2; S. 411 - 443
Hauptverfasser: Konyukhov, Alexander, Shala, Shqipron
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken, USA John Wiley & Sons, Inc 30.01.2022
Wiley Subscription Services, Inc
Schlagworte:
ISSN:0029-5981, 1097-0207
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Development of the numerical contact algorithms for finite element method usually concerns convergence, mesh dependency, etc. Verification of the numerical contact algorithm usually includes only a few cases due to a limited number of available analytic solutions (e.g., the Hertz solution for cylindrical surfaces). The solution of the generalized Euler–Eytelwein, or the belt friction problem is a stand alone task, recently formulated for a rope laying in sliding equilibrium on an arbitrary surface, opens up to a new set of benchmark problems for the verification of rope/beam to surface/solid contact algorithms. Not only a pulling forces ratio TT0, but also the position of a curve on a arbitrary rigid surface withstanding the motion in dragging direction should be verified. Particular situations possessing a closed form solution for ropes and rigid surfaces are analyzed. The verification study is performed employing the specially developed Solid‐Beam finite element with both linear and C1‐continuous approximations together with the Curve‐to‐Solid Beam (CTSB) contact algorithm and exemplary employing commercial finite element software. A crucial problem of "contact locking" in contact elements showing stiff behavior despite the good convergence is identified. This problem is resolved within the developed CTSB contact element.
AbstractList Development of the numerical contact algorithms for finite element method usually concerns convergence, mesh dependency, etc. Verification of the numerical contact algorithm usually includes only a few cases due to a limited number of available analytic solutions (e.g., the Hertz solution for cylindrical surfaces). The solution of the generalized Euler–Eytelwein, or the belt friction problem is a stand alone task, recently formulated for a rope laying in sliding equilibrium on an arbitrary surface, opens up to a new set of benchmark problems for the verification of rope/beam to surface/solid contact algorithms. Not only a pulling forces ratio TT0, but also the position of a curve on a arbitrary rigid surface withstanding the motion in dragging direction should be verified. Particular situations possessing a closed form solution for ropes and rigid surfaces are analyzed. The verification study is performed employing the specially developed Solid‐Beam finite element with both linear and C1‐continuous approximations together with the Curve‐to‐Solid Beam (CTSB) contact algorithm and exemplary employing commercial finite element software. A crucial problem of "contact locking" in contact elements showing stiff behavior despite the good convergence is identified. This problem is resolved within the developed CTSB contact element.
Development of the numerical contact algorithms for finite element method usually concerns convergence, mesh dependency, etc. Verification of the numerical contact algorithm usually includes only a few cases due to a limited number of available analytic solutions (e.g., the Hertz solution for cylindrical surfaces). The solution of the generalized Euler–Eytelwein, or the belt friction problem is a stand alone task, recently formulated for a rope laying in sliding equilibrium on an arbitrary surface, opens up to a new set of benchmark problems for the verification of rope/beam to surface/solid contact algorithms. Not only a pulling forces ratio , but also the position of a curve on a arbitrary rigid surface withstanding the motion in dragging direction should be verified. Particular situations possessing a closed form solution for ropes and rigid surfaces are analyzed. The verification study is performed employing the specially developed Solid‐Beam finite element with both linear and ‐continuous approximations together with the Curve‐to‐Solid Beam (CTSB) contact algorithm and exemplary employing commercial finite element software. A crucial problem of "contact locking" in contact elements showing stiff behavior despite the good convergence is identified. This problem is resolved within the developed CTSB contact element.
Author Shala, Shqipron
Konyukhov, Alexander
Author_xml – sequence: 1
  givenname: Alexander
  orcidid: 0000-0002-4172-5396
  surname: Konyukhov
  fullname: Konyukhov, Alexander
  email: Alexander.Konyukhov@kit.edu
  organization: Karlsruhe Institute of Technology
– sequence: 2
  givenname: Shqipron
  surname: Shala
  fullname: Shala, Shqipron
  organization: Karlsruhe Institute of Technology
BookMark eNp1kMFqGzEQhkVxII4byCMIcull3dHK3vUeg3HbQJpcmvMyqx3FStZSKmlj3JOPPQb6hn6SynFzCQ0CCUbfPz98J2xgnSXGzgSMBUD-2a5oXMwK8YENBVRlBjmUAzZMX1U2rWbimJ2EcA8gxBTkkP2-pjVvyKrlCv0Df_Su6WgVuHaeP5E32iiMxlnuNI9L4qr3T7TbPkeXrtB7jSoNnY2oIsfuznkTlyveYKCWp9g-c0eWPHbmVxot-o78bvtnsYnUrcnY18qP7EhjF-j03ztit18WP-bfsqubr5fzi6tMybwUGTZVmaPGKclcV9gIQChBilZqPYG8aBuQSI2eKYQKp9hCKSalBC0nok1Hjtj5YW_q_dlTiPW9671NlXVeCFEBFHmRqPGBUt6F4EnXysQXEdGj6WoB9d52nWzXe9sp8OlN4NGbpHTzPzQ7oGvT0eZdrr7-vnjh_wLQDpYH
CitedBy_id crossref_primary_10_1061_JSENDH_STENG_12320
crossref_primary_10_3390_s24248078
crossref_primary_10_3390_machines11050544
crossref_primary_10_1016_j_enganabound_2023_06_019
crossref_primary_10_1002_zamm_202200151
crossref_primary_10_3390_machines12100707
Cites_doi 10.1002/nme.5743
10.1016/j.cma.2011.03.013
10.1002/nme.5701
10.1007/s00466-015-1169-7
10.1017/CBO9781139171731
10.1016/j.ijsolstr.2017.07.020
10.1016/0021-9797(75)90018-1
10.1002/nme.6356
10.1016/j.cma.2010.04.012
10.1002/zamm.201300129
10.1002/nme.5253
10.1002/1097-0207(20001120)49:8<977::AID-NME986>3.0.CO;2-C
10.1007/978-3-642-31531-2
10.1007/978-94-015-7889-9
10.1098/rspa.1971.0141
10.1007/978-94-017-0169-3
ContentType Journal Article
Copyright 2021 The Authors. published by John Wiley & Sons Ltd.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by John Wiley & Sons Ltd.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nme.6861
DatabaseName Wiley Online Library Open Access
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 443
ExternalDocumentID 10_1002_nme_6861
NME6861
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3271-ab972afa5e32f9ab10a07031d3ff4026db03aebf8ca09a5ad0714730f341d1d13
IEDL.DBID 24P
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000720075700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
IngestDate Fri Jul 25 12:17:32 EDT 2025
Sat Nov 29 06:44:01 EST 2025
Tue Nov 18 21:52:32 EST 2025
Wed Jan 22 16:26:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3271-ab972afa5e32f9ab10a07031d3ff4026db03aebf8ca09a5ad0714730f341d1d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4172-5396
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6861
PQID 2611900626
PQPubID 996376
PageCount 33
ParticipantIDs proquest_journals_2611900626
crossref_citationtrail_10_1002_nme_6861
crossref_primary_10_1002_nme_6861
wiley_primary_10_1002_nme_6861_NME6861
PublicationCentury 2000
PublicationDate 30 January 2022
PublicationDateYYYYMMDD 2022-01-30
PublicationDate_xml – month: 01
  year: 2022
  text: 30 January 2022
  day: 30
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 56
2000; 49
2012
2015; 95
2016; 108
2020; 121
1971; 324
1975; 53
2005
2003
1769; 18
2018; 154
2020; 5
2020; 1
1990
2018; 113
2018; 114
2010; 199
1985
2018
2012; 205‐208
2015
2014
2013
1808
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_7_1
e_1_2_7_18_1
e_1_2_7_2_1
e_1_2_7_15_1
Konyukhov A (e_1_2_7_22_1) 2013
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_27_1
Schweizerhof K (e_1_2_7_19_1) 2014
Robbin JW (e_1_2_7_16_1) 2018
Eytelwein J (e_1_2_7_9_1) 1808
Euler L (e_1_2_7_8_1) 1769
Konyukhov A (e_1_2_7_17_1) 2015
Agoston MK (e_1_2_7_21_1) 2005
Magliulo M (e_1_2_7_25_1) 2020; 1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_20_1
Magliulo M (e_1_2_7_26_1) 2020; 5
Popov V (e_1_2_7_4_1) 2018
Costello GA (e_1_2_7_10_1) 2012
References_xml – year: 1985
– volume: 95
  start-page: 406
  issue: 4
  year: 2015
  end-page: 423
  article-title: Contact of ropes and orthotropic rough surfaces
  publication-title: ZAMM ‐ J Appl Math Mech / Zeitschrift für Angewandte Mathematik und Mechanik
– year: 2005
– volume: 154
  start-page: 124
  year: 2018
  end-page: 146
  article-title: Geometrically exact beam elements and smooth contact schemes for the modeling of fiber‐based materials and structures
  publication-title: Int J Solids Struct
– volume: 108
  start-page: 1290
  issue: 11
  year: 2016
  end-page: 1306
  article-title: General descriptions of follower forces derived via a geometrically exact inverse contact algorithm
  publication-title: Int J Numer Meth Eng
– year: 2003
– volume: 324
  start-page: 301
  issue: 1558
  year: 1971
  end-page: 313
  article-title: Surface energy and the contact of elastic solids
  publication-title: Proc Royal Soc Lond Math Phys Sci
– volume: 1
  year: 2020
  article-title: Contact between shear‐deformable beams with elliptical cross sections
  publication-title: Acta Mech
– volume: 114
  start-page: 255
  issue: 3
  year: 2018
  end-page: 291
  article-title: A mortar finite element approach for point, line, and surface contact
  publication-title: Int J Numer Methods Eng
– volume: 199
  start-page: 2510
  issue: 37
  year: 2010
  end-page: 2531
  article-title: Geometrically exact covariant approach for contact between curves
  publication-title: Comput Methods Appl Mech Eng
– volume: 49
  start-page: 977
  issue: 8
  year: 2000
  end-page: 1006
  article-title: Contact with friction between beams in 3‐D space
  publication-title: Int J Numer Methods Eng
– year: 2018
– year: 1990
– volume: 113
  start-page: 1108
  issue: 7
  year: 2018
  end-page: 1144
  article-title: Consistent development of a beam‐to‐beam contact algorithm via the curve‐to‐solid beam contact: analysis for the nonfrictional case
  publication-title: Int J Numer Methods Eng
– volume: 53
  start-page: 314
  year: 1975
  end-page: 326
  article-title: Effect of contact deformations on the adhesion of particles
  publication-title: J Colloid Interf Sci
– year: 2014
– volume: 56
  start-page: 243
  year: 2015
  end-page: 264
  article-title: Frictional beam‐to‐beam multiple‐point contact finite element
  publication-title: Comput Mech
– year: 2012
– volume: 205‐208
  start-page: 130
  year: 2012
  end-page: 138
  article-title: Geometrically exact theory for contact interactions of 1D manifolds. algorithmic implementation with various finite element models
  publication-title: Comput Methods Appl Mech Eng
– volume: 5
  year: 2020
  article-title: Non‐localised contact between beams with circular and elliptical cross‐sections
  publication-title: Comput Mech
– volume: 121
  start-page: 3249
  issue: 15
  year: 2020
  end-page: 3273
  article-title: A tribological model for geometrically structured anisotropic surfaces in a covariant form
  publication-title: Int J Numer Meth Eng
– volume: 18
  start-page: 265
  year: 1769
  end-page: 278
– year: 1808
– year: 2015
– year: 2013
– volume-title: Exact Solutions of Axisymmetric Contact Problems
  year: 2018
  ident: e_1_2_7_4_1
– start-page: 265
  volume-title: Remarques sur l'effet du frottement dans l'équilibre
  year: 1769
  ident: e_1_2_7_8_1
– ident: e_1_2_7_15_1
  doi: 10.1002/nme.5743
– volume-title: Introduction to Differential Geometry
  year: 2018
  ident: e_1_2_7_16_1
– ident: e_1_2_7_20_1
  doi: 10.1016/j.cma.2011.03.013
– ident: e_1_2_7_18_1
  doi: 10.1002/nme.5701
– ident: e_1_2_7_13_1
  doi: 10.1007/s00466-015-1169-7
– ident: e_1_2_7_2_1
  doi: 10.1017/CBO9781139171731
– ident: e_1_2_7_14_1
  doi: 10.1016/j.ijsolstr.2017.07.020
– ident: e_1_2_7_6_1
  doi: 10.1016/0021-9797(75)90018-1
– ident: e_1_2_7_23_1
  doi: 10.1002/nme.6356
– ident: e_1_2_7_27_1
  doi: 10.1016/j.cma.2010.04.012
– ident: e_1_2_7_11_1
  doi: 10.1002/zamm.201300129
– ident: e_1_2_7_24_1
  doi: 10.1002/nme.5253
– volume-title: Theory of Wire Rope
  year: 2012
  ident: e_1_2_7_10_1
– ident: e_1_2_7_12_1
  doi: 10.1002/1097-0207(20001120)49:8<977::AID-NME986>3.0.CO;2-C
– volume-title: Conference Proceedings, WCCM XI, ECCM V, ECFD VI, WCCM XI
  year: 2014
  ident: e_1_2_7_19_1
– volume-title: Computer Graphics and Geometric Modeling
  year: 2005
  ident: e_1_2_7_21_1
– volume-title: Handbuch der Statik fester Körper. Mit vorzüglicher Rücksicht auf ihre Anwendung in der Architektur
  year: 1808
  ident: e_1_2_7_9_1
– volume-title: Computational Contact Mechanics. Geometrically Exact Theory for Arbitrary Shaped Bodies
  year: 2013
  ident: e_1_2_7_22_1
  doi: 10.1007/978-3-642-31531-2
– volume: 5
  year: 2020
  ident: e_1_2_7_26_1
  article-title: Non‐localised contact between beams with circular and elliptical cross‐sections
  publication-title: Comput Mech
– ident: e_1_2_7_7_1
  doi: 10.1007/978-94-015-7889-9
– ident: e_1_2_7_5_1
  doi: 10.1098/rspa.1971.0141
– ident: e_1_2_7_3_1
  doi: 10.1007/978-94-017-0169-3
– volume: 1
  year: 2020
  ident: e_1_2_7_25_1
  article-title: Contact between shear‐deformable beams with elliptical cross sections
  publication-title: Acta Mech
– volume-title: Introduction into Computational Contact Mechanics ‐ Geometrical Approach
  year: 2015
  ident: e_1_2_7_17_1
SSID ssj0011503
Score 2.403791
Snippet Development of the numerical contact algorithms for finite element method usually concerns convergence, mesh dependency, etc. Verification of the numerical...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 411
SubjectTerms "contact locking"
Algorithms
arbitrary surfaces
belt friction problem
Benchmarks
Convergence
Curve‐to‐Solid beam contact
Exact solutions
Finite element method
generalized Euler–Eytelwein problem
Locking
Rope
ropes/beams to surface contact
Verification
Title New benchmark problems for verification of the curve‐to‐surface contact algorithm based on the generalized Euler–Eytelwein problem
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6861
https://www.proquest.com/docview/2611900626
Volume 123
WOSCitedRecordID wos000720075700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 0029-5981
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB5K0kN7aNK0pW4ebKGkJzWS1pK1x9DY5JCYUBrITcy-EhNbKpKckJxy7LGQf5hf0lk9XAdSKBSBhMQMEjszO9-sdr8F-IRItU4stCd1HHn9vrCeiKX0LCYaOUcHoevNJgbjcXJ2Jk7aWZVuLUzDD7EYcHORUffXLsBRlntLpKEz8yVOXOWzGgR84Dw67J8s_iAQ0OHd9I5IJEFHPOuHe53m41T0B18uo9Q6zYzW_ucD1-FVCy7ZfuMNr-GZyTZgrQWarA3jcgNeLrEQ0t3xgrq1fAM_qdtjkgQvZlhcsnbDmZIRuGXk9m5mUW1MlltGakzNiyvzcPeryulUzguLih7mWYWqYjg9z4tJdTFjLltqRmpO57zhup7c0qPhfGqKh7v74U1lptdmknWvfAuno-H3r4deu12Dp3g4CDyUYhCixcjw0AqUgY81O77m1lKVGmvpczTSJgp9gRFqt3aKOhhLiVTTwd_BSpZn5j0wEVsjUahARqIf6TixkRDK5wn5Pfra9OBzZ7lUtVzmbkuNadqwMIcpNX7qGr8HHxeSPxr-jidktjrjp20ElylVloSVfKr3erBbm_mv-un4eOiuH_5VcBNehG4Vhe-G_rZgpSrmZhueq6tqUhY7tR_vwOrBt9Hp0W--5f4R
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB_KVdA-WK1Kr1ZdQfQpNpe95LL4JHpHxbtDpIW-hdmv9vAuKUmu0j710UfB_7B_ibP5OE9QECSQkDBDws7Mzm82u78FeIFItU4ktCd1FHr9vrCeiKT0LMYaOUcHoavNJgbTaXxyIj5twJt2LUzND7EacHORUfXXLsDdgPTBGmvowryOYlf6bPbJi8IObL7_PDoer34iENbh7QyPUMS9lnvWDw5a3d-z0S-IuQ5Uq0wz2v6vb7wHdxuAyd7WHnEfNky6A9sN2GRNKBc7sLXGREh3kxV9a_EAvlHXxyQJni0w_8KaTWcKRgCXkeu72UWVQVlmGakxtcwvzM319zKjU7HMLSp6mKUlqpLh_DTLZ-XZgrmMqRmpOZ3Tmu96dkWPhsu5yW-ufwwvSzP_amZp-8qHcDwaHr079JotGzzFg0HPQykGAVoMDQ-sQNnzsWLI19xaqlQjLX2ORtpYoS8wRO3WT1EnYymZajr4I-ikWWp2gYnIGolC9WQo-qGOYhsKoXwek--jr00XXrWmS1TDZ-621ZgnNRNzkFDjJ67xu_B8JXlec3j8QWa_tX7SRHGRUHVJeMmnmq8LLys7_1U_mU6G7rr3r4LP4Pbh0WScjD9MPz6GO4FbVeG7ocB96JT50jyBW-qinBX508atfwJVlQH9
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9RAFH-UWooeWlsVt7Y6QtFTbDaTZDN4EruLUrvsQaG38OarXdxNSpKt6KlHj4L_Yf8S3-Rju4KCIIGEhPdImPc9mfk9gENEqnVioT2p48gLQ2E9EUvpWUw0co4uha6bTQzG4-TsTEzW4HW3F6bBh1hOuDnLqP21M3Bzqe3RCmro3LyKE1f63AkjcrEO1jmcLH8hUKbDu_UdkUj6HfKsHxx1nL_HotsEczVNrePMaPu_vvA-bLXpJXvT6MMOrJlsF7bbVJO1hlzuwr0VHEK6O12Ct5YP4Ds5PiaJ8GKOxWfWtpwpGaW3jBTfrS2qxclyy4iNqUVxZW6uf1Q5ncpFYVHRwzyrUFUMZ-d5Ma0u5szFS82IzfGcN2jX02_0aLiYmeLm-ufwa2VmX8w06175ED6Nhh_fvvPahg2e4sGg76EUgwAtRoYHVqDs-1jj42tuLdWpsZY-RyNtotAXGKF2u6fIxVgKpZoO_gjWszwzj4GJ2BqJQvVlJMJIx4mNhFA-T0jz0demBy870aWqRTN3TTVmaYPDHKQ0-Kkb_B48X1JeNggef6DZ76SftjZcplRbUrbkU8XXgxe1nP_Kn45Ph-6696-Ez2BzcjxKP7wfnzyBu4HbUuG7ecB9WK-KhTmADXVVTcviaa3TvwBet__X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+benchmark+problems+for+verification+of+the+curve%E2%80%90to%E2%80%90surface+contact+algorithm+based+on+the+generalized+Euler%E2%80%93Eytelwein+problem&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=Konyukhov%2C+Alexander&rft.au=Shala%2C+Shqipron&rft.date=2022-01-30&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=123&rft.issue=2&rft.spage=411&rft.epage=443&rft_id=info:doi/10.1002%2Fnme.6861&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nme_6861
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon