On Bernoulli series approximation for the matrix cosine
This paper presents a new series expansion based on Bernoulli matrix polynomials to approximate the matrix cosine function. An approximation based on this series is not a straightforward exercise since there exist different options to implement such a solution. We dive into these options and include...
Saved in:
| Published in: | Mathematical methods in the applied sciences Vol. 45; no. 6; pp. 3239 - 3253 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Freiburg
Wiley Subscription Services, Inc
01.04.2022
|
| Subjects: | |
| ISSN: | 0170-4214, 1099-1476 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper presents a new series expansion based on Bernoulli matrix polynomials to approximate the matrix cosine function. An approximation based on this series is not a straightforward exercise since there exist different options to implement such a solution. We dive into these options and include a thorough comparative of performance and accuracy in the experimental results section that shows benefits and downsides of each one. Also, a comparison with the Padé approximation is included. The algorithms have been implemented in MATLAB and in CUDA for NVIDIA GPUs. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0170-4214 1099-1476 |
| DOI: | 10.1002/mma.7041 |