On Bernoulli series approximation for the matrix cosine

This paper presents a new series expansion based on Bernoulli matrix polynomials to approximate the matrix cosine function. An approximation based on this series is not a straightforward exercise since there exist different options to implement such a solution. We dive into these options and include...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences Jg. 45; H. 6; S. 3239 - 3253
Hauptverfasser: Defez, Emilio, Ibáñez, Javier, Alonso, José M., Alonso‐Jordá, Pedro
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Freiburg Wiley Subscription Services, Inc 01.04.2022
Schlagworte:
ISSN:0170-4214, 1099-1476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper presents a new series expansion based on Bernoulli matrix polynomials to approximate the matrix cosine function. An approximation based on this series is not a straightforward exercise since there exist different options to implement such a solution. We dive into these options and include a thorough comparative of performance and accuracy in the experimental results section that shows benefits and downsides of each one. Also, a comparison with the Padé approximation is included. The algorithms have been implemented in MATLAB and in CUDA for NVIDIA GPUs.
AbstractList This paper presents a new series expansion based on Bernoulli matrix polynomials to approximate the matrix cosine function. An approximation based on this series is not a straightforward exercise since there exist different options to implement such a solution. We dive into these options and include a thorough comparative of performance and accuracy in the experimental results section that shows benefits and downsides of each one. Also, a comparison with the Padé approximation is included. The algorithms have been implemented in MATLAB and in CUDA for NVIDIA GPUs.
Author Alonso, José M.
Defez, Emilio
Ibáñez, Javier
Alonso‐Jordá, Pedro
Author_xml – sequence: 1
  givenname: Emilio
  surname: Defez
  fullname: Defez, Emilio
  organization: Universitat Politècnica de València
– sequence: 2
  givenname: Javier
  orcidid: 0000-0002-6912-4453
  surname: Ibáñez
  fullname: Ibáñez, Javier
  organization: Universitat Politècnica de València
– sequence: 3
  givenname: José M.
  surname: Alonso
  fullname: Alonso, José M.
  organization: Universitat Politècnica de València
– sequence: 4
  givenname: Pedro
  orcidid: 0000-0002-6882-6592
  surname: Alonso‐Jordá
  fullname: Alonso‐Jordá, Pedro
  email: palonso@upv.es
  organization: Universitat Politècnica de València
BookMark eNp1kE9LAzEQxYNUsK2CHyHgxcuumU2a7B5r8R-09KLnELMJpmyTmmyx_famrSfR0zDwe2_evBEa-OANQtdASiCkuluvVSkIgzM0BNI0BTDBB2hIQJCCVcAu0CilFSGkBqiGSCw9vjfRh23XOZxMdCZhtdnEsHNr1bvgsQ0R9x8G5zW6HdYhOW8u0blVXTJXP3OM3h4fXmfPxXz59DKbzgtNKwFFI3hLuaYtnwilOOMGKAgG74IZzeoJr7UmLVO0tS1njNVgK6tUrYUVra4JHaObk29O9Lk1qZersI0-n5QVpwKampMmU7cnSseQUjRWbmKOH_cSiDzUInMt8lBLRstfqHb98dE-Ktf9JShOgi_Xmf2_xnKxmB75bx2_c_E
CitedBy_id crossref_primary_10_3390_math11030520
Cites_doi 10.1016/j.cam.2018.12.041
10.1007/s00366-018-0595-5
10.1145/50063.214386
10.1016/j.cam.2018.08.047
10.1016/0096-3003(79)90011-0
10.1103/PhysRevE.78.026102
10.1137/1.9780898717778
10.1137/0901013
10.1016/S0168-9274(03)00073-4
10.1016/j.amc.2017.05.019
10.1103/PhysRevE.72.046105
10.1016/j.cam.2009.01.021
10.1002/num.22218
10.1080/00207160.2013.791392
10.1016/j.mcm.2010.05.013
10.1137/140973979
10.1016/j.laa.2017.11.010
10.1016/j.cpc.2014.07.001
10.1007/s11227-018-2354-1
10.1137/0202007
10.1016/j.physd.2015.10.020
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
2022 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
– notice: 2022 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.7041
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 3253
ExternalDocumentID 10_1002_mma_7041
MMA7041
Genre article
GrantInformation_xml – fundername: Universitat Politècnica de València
  funderid: SP20180016
– fundername: Spanish Ministerio de Economı́a y Competitividad and European Regional Development Fund
  funderid: TIN2017‐89314‐P
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
AMVHM
CITATION
O8X
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c3271-976d36c3d657aa646e131741b74ec48568cc0d4a3dfd644481f2faa8c7f7dc803
IEDL.DBID DRFUL
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000590134100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0170-4214
IngestDate Fri Jul 25 12:20:46 EDT 2025
Sat Nov 29 01:34:04 EST 2025
Tue Nov 18 22:32:53 EST 2025
Wed Jan 22 16:26:35 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3271-976d36c3d657aa646e131741b74ec48568cc0d4a3dfd644481f2faa8c7f7dc803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6912-4453
0000-0002-6882-6592
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mma.7041
PQID 2637198609
PQPubID 1016386
PageCount 15
ParticipantIDs proquest_journals_2637198609
crossref_primary_10_1002_mma_7041
crossref_citationtrail_10_1002_mma_7041
wiley_primary_10_1002_mma_7041_MMA7041
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 37
2019; 75
2010
2019; 35
1988; 14
2009; 231
2013; 91
2009
2008
2008; 78
2007
2019; 348
2016; 323
2002
2017; 312
2020
1980; 1
2003; 47
1979; 5
2019
2018; 539
2005; 72
2013
2018; 34
2014; 185
2010; 52
2019; 354
1973; 2
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
Olver FWJ (e_1_2_8_20_1) 2010
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_15_1
e_1_2_8_16_1
Sastre J (e_1_2_8_14_1) 2017; 312
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – year: 2009
– volume: 14
  start-page: 381
  issue: 4
  year: 1988
  end-page: 396
  article-title: Fortran codes for estimating the one‐norm of a real or complex matrix, with applications to condition estimation
  publication-title: ACM Trans Math Softw
– year: 2007
– volume: 323
  start-page: 57
  year: 2016
  end-page: 63
  article-title: Network bipartivity and the transportation efficiency of European passenger airlines
  publication-title: Phys D: Nonlinear Phenom
– volume: 47
  start-page: 477
  issue: 3‐4
  year: 2003
  end-page: 492
  article-title: Constructive solution of strongly coupled continuous hyperbolic mixed problems
  publication-title: Appl Numer Math
– volume: 75
  start-page: 1227
  issue: 3
  year: 2019
  end-page: 1240
  article-title: Computing matrix trigonometric functions with GPUs through Matlab
  publication-title: J Supercomput
– volume: 2
  start-page: 60
  issue: 1
  year: 1973
  end-page: 66
  article-title: On the number of nonscalar multiplications necessary to evaluate polynomials
  publication-title: SIAM J Comput
– volume: 539
  start-page: 229
  year: 2018
  end-page: 250
  article-title: Efficient evaluation of matrix polynomials
  publication-title: Linear Algebra Appl
– volume: 185
  start-page: 2834
  issue: 11
  year: 2014
  end-page: 2840
  article-title: Bounds for variable degree rational L1 approximations to the matrix cosine
  publication-title: Comput Phys Commun
– volume: 231
  start-page: 67
  issue: 1
  year: 2009
  end-page: 81
  article-title: Determination of a matrix function using the divided difference method of Newton and the interpolation technique of Hermite
  publication-title: J Comput Appl Math
– volume: 37
  start-page: A456
  issue: 1
  year: 2015
  end-page: A487
  article-title: New algorithms for computing the matrix sine and cosine separately or simultaneously
  publication-title: SIAM J Sci Comput
– year: 2010
– volume: 35
  start-page: 229
  issue: 1
  year: 2019
  end-page: 241
  article-title: Semi‐analytical solution for timefractional diffusion equation based on finite difference method of lines (MOL)
  publication-title: Eng with Comput
– volume: 52
  start-page: 826
  issue: 5‐6
  year: 2010
  end-page: 836
  article-title: Computing matrix functions using mixed interpolation methods
  publication-title: Math Comput Model
– volume: 34
  start-page: 626
  issue: 2
  year: 2018
  end-page: 660
  article-title: Application of finite difference method of lines on the heat equation
  publication-title: Numer Methods Partial Diff Equat
– volume: 312
  start-page: 66
  year: 2017
  end-page: 77
  article-title: Two algorithms for computing the matrix cosine function
  publication-title: Appl Math Comput
– volume: 72
  issue: 4
  year: 2005
  article-title: Spectral measures of bipartivity in complex networks
  publication-title: Phys Rev E
– year: 2002
– year: 2008
– volume: 354
  start-page: 641
  year: 2019
  end-page: 650
  article-title: Fast Taylor polynomial evaluation for the computation of the matrix cosine
  publication-title: J Comput Appl Math
– year: 2020
– volume: 91
  start-page: 97
  issue: 1
  year: 2013
  end-page: 112
  article-title: Accurate and efficient matrix exponential computation
  publication-title: Int J Comput Math
– volume: 348
  start-page: 1
  year: 2019
  end-page: 13
  article-title: An efficient and accurate algorithm for computing the matrix cosine based on new Hermite approximations
  publication-title: J Comput Appl Math
– volume: 78
  issue: 2
  year: 2008
  article-title: Communicability and multipartite structures in complex networks at negative absolute temperatures
  publication-title: Phys Rev E
– year: 2019
– volume: 5
  start-page: 75
  issue: 1
  year: 1979
  end-page: 92
  article-title: Rational approximations of trigonometric matrices with application to second‐order systems of differential equations
  publication-title: Appl Math Comput
– volume: 1
  start-page: 198
  issue: 2
  year: 1980
  end-page: 204
  article-title: An algorithm for computing the matrix cosine
  publication-title: SIAM J Sci Comput
– year: 2013
– ident: e_1_2_8_15_1
  doi: 10.1016/j.cam.2018.12.041
– ident: e_1_2_8_12_1
  doi: 10.1007/s00366-018-0595-5
– ident: e_1_2_8_25_1
  doi: 10.1145/50063.214386
– ident: e_1_2_8_16_1
  doi: 10.1016/j.cam.2018.08.047
– ident: e_1_2_8_17_1
  doi: 10.1016/0096-3003(79)90011-0
– ident: e_1_2_8_2_1
  doi: 10.1103/PhysRevE.78.026102
– ident: e_1_2_8_28_1
– ident: e_1_2_8_8_1
  doi: 10.1137/1.9780898717778
– ident: e_1_2_8_21_1
– ident: e_1_2_8_6_1
  doi: 10.1137/0901013
– ident: e_1_2_8_5_1
  doi: 10.1016/S0168-9274(03)00073-4
– ident: e_1_2_8_27_1
– volume: 312
  start-page: 66
  year: 2017
  ident: e_1_2_8_14_1
  article-title: Two algorithms for computing the matrix cosine function
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2017.05.019
– ident: e_1_2_8_3_1
  doi: 10.1103/PhysRevE.72.046105
– ident: e_1_2_8_11_1
  doi: 10.1016/j.cam.2009.01.021
– ident: e_1_2_8_19_1
– ident: e_1_2_8_13_1
  doi: 10.1002/num.22218
– ident: e_1_2_8_30_1
– ident: e_1_2_8_24_1
  doi: 10.1080/00207160.2013.791392
– ident: e_1_2_8_7_1
  doi: 10.1016/j.mcm.2010.05.013
– ident: e_1_2_8_18_1
  doi: 10.1137/140973979
– ident: e_1_2_8_23_1
  doi: 10.1016/j.laa.2017.11.010
– ident: e_1_2_8_10_1
  doi: 10.1016/j.cpc.2014.07.001
– volume-title: NIST Handbook of Mathematical Functions Hardback and CROM
  year: 2010
  ident: e_1_2_8_20_1
– ident: e_1_2_8_9_1
  doi: 10.1007/s11227-018-2354-1
– ident: e_1_2_8_22_1
  doi: 10.1137/0202007
– ident: e_1_2_8_29_1
– ident: e_1_2_8_4_1
  doi: 10.1016/j.physd.2015.10.020
– ident: e_1_2_8_26_1
SSID ssj0008112
Score 2.2954843
Snippet This paper presents a new series expansion based on Bernoulli matrix polynomials to approximate the matrix cosine function. An approximation based on this...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3239
SubjectTerms Algorithms
Approximation
Mathematical analysis
matrix exponential and similar functions of matrices
Pade approximation
Polynomials
polynomials and matrices
Series expansion
Trigonometric functions
Title On Bernoulli series approximation for the matrix cosine
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.7041
https://www.proquest.com/docview/2637198609
Volume 45
WOSCitedRecordID wos000590134100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-1476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008112
  issn: 0170-4214
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED9k80Ef_JiK0ykRxI-Har6WpI9-DR_cFHGwt9ImKQiuk3XK_nyTtpsKCoJQ6EMvJVzucj-Su98BHAprcCpoGHCT4sBFKBIkWISBcMYjpcLa4LhoNiF7PTUYhA9VVqWvhSn5IeYHbt4ziv3aO3ic5OefpKHDYXwmsa9Zr1Nntu0a1K8fO_27-T6sSHHX6QliAk4Jn1HPYno-G_s9GH0izK84tQg0ndX_THENVip4iS5Ke1iHBZs1YLk752bNG7BeuXOOTirO6dMNkPcZurTjbOTvhpA3S_e94BufPpfFjcihW-R-g4ae1H-K9MhnzG9Cv3PzdHUbVD0VAs2oJIFDH4YJzYxoyzgWXFjiEAQnieRWc9UWSmtseMxMahxU4oqkNI1jpWUqjVaYbUEtG2V2GxBmVofuUdIa7puWJ0wlklChTGIoY004nik30hXhuO978RKVVMk0cvqJvH6acDCXfC1JNn6Qac3WJ6rcLI-oYJKESuCwCUfFSvw6Pup2L_x756-Cu7BEfalDkaXTgtpk_Gb3YFG_T57z8X5lbB-0o9Xn
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEB5EBfXBW6xnBPF4WJurSRafvIpiW0UUfFt2kywIdittFX--yR5VQUEQFvKwk2WZfJN8JJlvAHaFNTgVNAy4SXHgVigSJFiEgXDgkVJhbXCcF5uQnY56fAxvx-C4yoUp9CFGG24-MvL52ge435Cuf6qGdrvxkcQ-aX2COxQ5eE-c3zUfWqOJWJH8sNMrxAScEl5pz2Jar_p-X40-KeZXopqvNM25f_3jPMyWBBOdFIhYgDGbLcJMe6TOOliEhTKgB-igVJ0-XAJ5k6FT2896_nQIeWC697ni-PtTkd6IHL9F7jOo62X935Hu-Tvzy_DQvLg_uwzKqgqBZlSSwPEPw4RmRjRkHAsuLHEcgpNEcqu5agilNTY8ZiY1jixxRVKaxrHSMpVGK8xWYDzrZXYVEGZWh-5R0hruy5YnTCWSUKFMYihjNdivvBvpUnLcV754jgqxZBo5_0TePzXYGVm-FDIbP9hsVAMUlYE2iKhgkoRK4LAGe_lQ_No_ardPfLv2V8NtmLq8b7ei1lXneh2mqU98yO_sbMD4sP9qN2FSvw2fBv2tEnkfj4nZ1w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8QwEB5kV0QfvMX1jCAeD3VzmaT45LUouquIgm-lTVIQ3K7sruLPN-mxKigIQqEPnZQymcl8NJnvA9gW1uBU0DDgJsWBq1AkSLAIA-GCR0qFtcFxLjYhOx31-BjejsFR1QtT8EOMfrj5zMjXa5_g9sWkzU_W0G43PpDYN63XudeQqUH97K71cD1aiBXJNzs9Q0zAKeEV9yymzWrs92r0CTG_AtW80rRm_vWNszBdAkx0XETEHIzZbB6m2iN21sE8zJUJPUB7Jev0_gLImwyd2H7W87tDyAeme54zjr8_Fe2NyOFb5F6Dup7W_x3pnj8zvwgPrfP704ugVFUINKOSBA5_GCY0M-JQxrHgwhKHIThJJLeaq0OhtMaGx8ykxoElrkhK0zhWWqbSaIXZEtSyXmaXAWFmdeguJa3hXrY8YSqRhAplEkMZa8Bu5d1Il5TjXvniOSrIkmnk_BN5_zRga2T5UtBs_GCzVk1QVCbaIKKCSRIqgcMG7ORT8ev4qN0-9veVvxpuwsTtWSu6vuxcrcIk9X0P-ZGdNagN-692Hcb12_Bp0N8oA-8DUfDZUg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Bernoulli+series+approximation+for+the+matrix+cosine&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Defez%2C+Emilio&rft.au=Ib%C3%A1%C3%B1ez%2C+Javier&rft.au=Alonso%2C+Jos%C3%A9+M.&rft.au=Alonso%E2%80%90Jord%C3%A1%2C+Pedro&rft.date=2022-04-01&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=45&rft.issue=6&rft.spage=3239&rft.epage=3253&rft_id=info:doi/10.1002%2Fmma.7041&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mma_7041
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon