On the existence of solutions for a parabolic‐elliptic chemotaxis model with flux limitation and logistic source

In this article, we study the existence of solutions of a parabolic‐elliptic system of partial differential equations describing the behaviour of a biological species “ u$$ u $$” and a chemical stimulus “ v$$ v $$” in a bounded and regular domain Ω$$ \Omega $$ of ℝN$$ {\mathbb{R}}^N...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences Jg. 46; H. 8; S. 9252 - 9267
Hauptverfasser: Sastre‐Gomez, Silvia, Tello, Jose Ignacio
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Freiburg Wiley Subscription Services, Inc 30.05.2023
Schlagworte:
ISSN:0170-4214, 1099-1476
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this article, we study the existence of solutions of a parabolic‐elliptic system of partial differential equations describing the behaviour of a biological species “ u$$ u $$” and a chemical stimulus “ v$$ v $$” in a bounded and regular domain Ω$$ \Omega $$ of ℝN$$ {\mathbb{R}}&amp;#x0005E;N $$. The equation for u$$ u $$ is a parabolic equation with a nonlinear second order term of chemotaxis type with flux limitation as −χdiv(u|∇v|p−2∇v),$$ -\chi \operatorname{div}\left(u{\left&amp;#x0007C;\nabla v\right&amp;#x0007C;}&amp;#x0005E;{p-2}\nabla v\right), $$ for p>1$$ p&gt;1 $$. The chemical substance distribution v$$ v $$ satisfies the elliptic equation −Δv+v=u.$$ -\Delta v&amp;#x0002B;v&amp;#x0003D;u. $$ The evolution of u$$ u $$ is also determined by a logistic type growth term μu(1−u)$$ \mu u\left(1-u\right) $$. The system is studied under homogeneous Neumann boundary conditions. The main result of the article is the existence of uniformly bounded solutions for p<3/2$$ p&lt;3/2 $$ and any N≥2$$ N\ge 2 $$.
AbstractList In this article, we study the existence of solutions of a parabolic‐elliptic system of partial differential equations describing the behaviour of a biological species “ ” and a chemical stimulus “ ” in a bounded and regular domain of . The equation for is a parabolic equation with a nonlinear second order term of chemotaxis type with flux limitation as for . The chemical substance distribution satisfies the elliptic equation The evolution of is also determined by a logistic type growth term . The system is studied under homogeneous Neumann boundary conditions. The main result of the article is the existence of uniformly bounded solutions for and any .
In this article, we study the existence of solutions of a parabolic‐elliptic system of partial differential equations describing the behaviour of a biological species “ u$$ u $$” and a chemical stimulus “ v$$ v $$” in a bounded and regular domain Ω$$ \Omega $$ of ℝN$$ {\mathbb{R}}&amp;#x0005E;N $$. The equation for u$$ u $$ is a parabolic equation with a nonlinear second order term of chemotaxis type with flux limitation as −χdiv(u|∇v|p−2∇v),$$ -\chi \operatorname{div}\left(u{\left&amp;#x0007C;\nabla v\right&amp;#x0007C;}&amp;#x0005E;{p-2}\nabla v\right), $$ for p>1$$ p&gt;1 $$. The chemical substance distribution v$$ v $$ satisfies the elliptic equation −Δv+v=u.$$ -\Delta v&amp;#x0002B;v&amp;#x0003D;u. $$ The evolution of u$$ u $$ is also determined by a logistic type growth term μu(1−u)$$ \mu u\left(1-u\right) $$. The system is studied under homogeneous Neumann boundary conditions. The main result of the article is the existence of uniformly bounded solutions for p<3/2$$ p&lt;3/2 $$ and any N≥2$$ N\ge 2 $$.
In this article, we study the existence of solutions of a parabolic‐elliptic system of partial differential equations describing the behaviour of a biological species “u$$ u $$” and a chemical stimulus “v$$ v $$” in a bounded and regular domain Ω$$ \Omega $$ of ℝN$$ {\mathbb{R}}^N $$. The equation for u$$ u $$ is a parabolic equation with a nonlinear second order term of chemotaxis type with flux limitation as −χdiv(u|∇v|p−2∇v),$$ -\chi \operatorname{div}\left(u{\left|\nabla v\right|}^{p-2}\nabla v\right), $$for p>1$$ p>1 $$. The chemical substance distribution v$$ v $$ satisfies the elliptic equation −Δv+v=u.$$ -\Delta v+v=u. $$The evolution of u$$ u $$ is also determined by a logistic type growth term μu(1−u)$$ \mu u\left(1-u\right) $$. The system is studied under homogeneous Neumann boundary conditions. The main result of the article is the existence of uniformly bounded solutions for p<3/2$$ p<3/2 $$ and any N≥2$$ N\ge 2 $$.
Author Tello, Jose Ignacio
Sastre‐Gomez, Silvia
Author_xml – sequence: 1
  givenname: Silvia
  orcidid: 0000-0002-7082-2726
  surname: Sastre‐Gomez
  fullname: Sastre‐Gomez, Silvia
  email: ssastre@us.es
  organization: Universidad de Sevilla
– sequence: 2
  givenname: Jose Ignacio
  orcidid: 0000-0003-2671-7803
  surname: Tello
  fullname: Tello, Jose Ignacio
  organization: Universidad Nacional de Educación a Distancia
BookMark eNp1kE1OwzAQhS1UJNqCxBEssWGTYjt_9bKq-JNadQPryHEm1JUTB9tV2x1H4IycBId2hWA1s_jem3lvhAataQGha0omlBB21zRiwklKztCQEs4jmuTZAA0JzUmUMJpcoJFzG0LIlFI2RHbVYr8GDHvlPLQSsKmxM3rrlWkdro3FAnfCitJoJb8-PkFr1XklsVxDY7wIOtyYCjTeKb_Gtd7usVaN8qJ3wKKtsDZvwTxInNlaCZfovBbawdVpjtHrw_3L_ClarB6f57NFJGMWnqWJyHlWJgnjQpa8rKSEiktZMSA0FXVO6nwqcyjjOIdUJHEa1owLxhlUMSXxGN0cfTtr3rfgfLEJ99twsmB9-CSbZmmgbo-UtMY5C3XRWdUIeygoKfpGi9Bo0Tca0MkvVJ5ieiuU_ksQHQU7peHwr3GxXM5--G8NN4wC
CitedBy_id crossref_primary_10_1007_s00033_024_02320_w
crossref_primary_10_1002_mma_11051
crossref_primary_10_1007_s10440_024_00699_2
crossref_primary_10_1002_mma_9449
Cites_doi 10.1080/03605302.2021.1975132
10.1007/s00332‐010‐9082‐x
10.1016/j.jtbi.2015.07.023
10.5802/aif.204
10.1016/0022‐5193(70)90092‐5
10.1016/0022‐5193(71)90050‐6
10.1016/j.jde.2016.05.008
10.1016/j.aml.2020.106351
10.1007/978-3-642-61798-0
10.1016/j.jde.2018.01.040
10.1016/j.jde.2016.07.008
10.1512/iumj.2022.71.9042
10.1371/journal.pcbi.1000890
10.1016/j.jmaa.2022.126376
10.1007/s00285-008-0201-3
10.1080/03605302.2016.1277237
10.1090/btran/17
10.1016/0009‐2509(89)85098‐5
10.1016/j.jde.2015.07.019
10.1016/j.jde.2019.05.026
10.1080/03605300701319003
10.1080/03605302.2020.1712417
10.4171/rmi/1132
10.1016/j.aml.2022.108299
10.3934/krm.2012.5.51
10.1007/s10440-019-00275-z
ContentType Journal Article
Copyright 2023 The Authors. Mathematical Methods in the Applied Sciences published by John Wiley & Sons Ltd.
2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Mathematical Methods in the Applied Sciences published by John Wiley & Sons Ltd.
– notice: 2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.9050
DatabaseName Wiley Online Library Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList CrossRef

Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access (Activated by CARLI)
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 9267
ExternalDocumentID 10_1002_mma_9050
MMA9050
Genre article
GrantInformation_xml – fundername: Junta de Andalucía FQM‐131
– fundername: UCM, SPAIN
  funderid: GR58/08 Grupo 920894
– fundername: Dirección General de Investigación Científica y Técnica
  funderid: Project MTM2017‐83391‐P DGICT Spain
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
AMVHM
CITATION
O8X
7TB
8FD
FR3
JQ2
KR7
ID FETCH-LOGICAL-c3270-14a796b4429acb9bdcced9ccd2e015af70f78c7eb337e5a435eb369a292ed3103
IEDL.DBID 24P
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000921317200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0170-4214
IngestDate Fri Jul 25 11:58:55 EDT 2025
Sat Nov 29 04:26:50 EST 2025
Tue Nov 18 21:01:52 EST 2025
Wed Jan 22 16:21:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3270-14a796b4429acb9bdcced9ccd2e015af70f78c7eb337e5a435eb369a292ed3103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7082-2726
0000-0003-2671-7803
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.9050
PQID 2811246865
PQPubID 1016386
PageCount 16
ParticipantIDs proquest_journals_2811246865
crossref_primary_10_1002_mma_9050
crossref_citationtrail_10_1002_mma_9050
wiley_primary_10_1002_mma_9050_MMA9050
PublicationCentury 2000
PublicationDate 30 May 2023
PublicationDateYYYYMMDD 2023-05-30
PublicationDate_xml – month: 05
  year: 2023
  text: 30 May 2023
  day: 30
PublicationDecade 2020
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 383
2022; 134
2017; 42
2018; 265
1989; 44
2017; 4
2022; 71
2019; 267
2022; 47
2007
2020; 106
2020; 36
2020; 167
2022; 515
1965; 15
2007; 32
2016; 78
2016; 261
1971; 30
2009; 58
1974; 25
2003; 105
2015; 259
1964
2011; 21
1983
2020; 45
2012; 5
1970; 26
2010; 6
Horstmann D (e_1_2_6_4_1) 2003; 105
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_12_1
e_1_2_6_17_1
Brezis H (e_1_2_6_28_1) 1974; 25
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
Friedman A (e_1_2_6_27_1) 1964
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_26_1
References_xml – volume: 25
  start-page: 831
  year: 1974
  end-page: 844
  article-title: Semilinear second order elliptic equations in
  publication-title: J Math Soc Japan
– year: 1983
– volume: 30
  start-page: 225
  year: 1971
  end-page: 234
  article-title: A model for chemotaxis
  publication-title: J Theoret Biol
– volume: 261
  start-page: 2650
  year: 2016
  end-page: 2669
  article-title: Global existence and asymptotic stability of solutions to a two‐species chemotaxis system with any chemical diffusion
  publication-title: J Differ Equ
– year: 1964
– volume: 383
  start-page: 61
  year: 2015
  end-page: 86
  article-title: A mathematical model for lymphangiogenesis in normal and diabetic wounds
  publication-title: J Theor Biol
– volume: 42
  start-page: 436
  issue: 3
  year: 2017
  end-page: 473
  article-title: A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow‐up
  publication-title: Commun Partial Differ Equ
– volume: 21
  start-page: 231
  year: 2011
  end-page: 270
  article-title: Generalizing the Keller–Segel Model: Lyapunov Functionals, Steady State Analysis, and Blow‐Up Results for Multi‐species Chemotaxis Models in the Presence of Attraction and Repulsion Between Competitive Interacting Species
  publication-title: J Nonlinear Sci
– volume: 267
  start-page: 5115
  year: 2019
  end-page: 5164
  article-title: Extensibility criterion ruling out gradient blow‐up in a quasilinear degenerate chemotaxis system with flux limitation
  publication-title: J Differ Equ
– year: 2007
– volume: 45
  start-page: 690
  issue: 7
  year: 2020
  end-page: 713
  article-title: Sublinear elliptic systems with a convection term
  publication-title: Commun Partial Differ Equ
– volume: 167
  start-page: 231
  year: 2020
  end-page: 259
  article-title: Finite‐time blow‐up in a quasi‐ linear degenerate chemotaxis system with ux limitation
  publication-title: Acta Appl Math
– volume: 15
  start-page: 189
  year: 1965
  end-page: 258
  publication-title: Ann Inst Fourier (Grenoble)
– volume: 265
  start-page: 733
  issue: 3
  year: 2018
  end-page: 751
  article-title: On a parabolic‐elliptic system with gradient dependent chemotactic coefficient
  publication-title: J Differ Equ
– volume: 6
  year: 2010
  article-title: Mathematical description of bacterial traveling pulses
  publication-title: PLoS Comput Biol
– volume: 134
  start-page: 108299
  year: 2022
  article-title: On an elliptic chemotaxis system with flux limitation and subcritical signal production
  publication-title: Appl Math Lett
– volume: 5
  start-page: 51
  issue: 1
  year: 2012
  end-page: 95
  article-title: On a chemotaxis model with saturated chemotactic flux
  publication-title: Kinetic Related Models
– volume: 4
  start-page: 31
  year: 2017
  end-page: 67
  article-title: Finite‐time blow‐up in a degenerate chemotaxis system with flux limitation
  publication-title: Trans Amer Math Soc Ser B
– volume: 71
  start-page: 1437
  year: 2022
  end-page: 1465
  article-title: A critical blow‐up exponent for flux limitation in a Keller‐Segel system
  publication-title: Indiana Univ Math J
– volume: 26
  start-page: 399
  year: 1970
  end-page: 415
  article-title: Initiation of slime mold aggregation viewed as an instability
  publication-title: J Theor Biol
– volume: 44
  start-page: 2881
  issue: 12
  year: 1989
  end-page: 2897
  article-title: Transport models for chemotactic cell populations based on individual cell behavior
  publication-title: Chem Eng Sci
– volume: 105
  start-page: 103
  issue: 3
  year: 2003
  end-page: 165
  article-title: From 1970 until present: the Keller‐Segel model in chemotaxis and its consequences
  publication-title: Jahresbericht der Deutschen Mathematiker‐Vereinigung
– volume: 261
  start-page: 4631
  issue: 8
  year: 2016
  end-page: 4647
  article-title: On a parabolic‐elliptic system with chemotaxis and logistic type growth
  publication-title: J Differ Equ
– volume: 58
  start-page: 183
  year: 2009
  end-page: 217
  article-title: A users guide to PDE models for chemotaxis
  publication-title: J Math Biol
– volume: 78
  start-page: 1904
  year: 2016
  end-page: 1941
  article-title: Spatio‐temporal models of lymphangiogenesis in wound healing
  publication-title: Bull Math Biol
– volume: 515
  start-page: 126376
  year: 2022
  article-title: Blow‐up phenomena for a chemotaxis system with flux limitation
  publication-title: J Math Anal Appl
– volume: 32
  start-page: 849
  issue: 6
  year: 2007
  end-page: 877
  article-title: A Chemotaxis System with Logistic Source
  publication-title: Commun Partial Differ Equ
– volume: 259
  start-page: 6142
  year: 2015
  end-page: 6161
  article-title: Persistence of mass in a chemotaxis system with logistic source
  publication-title: J Differ Equ
– volume: 106
  start-page: 106351
  year: 2020
  article-title: A note on a periodic Parabolic‐ODE chemotaxis system
  publication-title: Appl Math Lett
– volume: 36
  start-page: 357
  year: 2020
  end-page: 386
  article-title: The flux limited Keller‐Segel system: properties and derivation from kinetic equations
  publication-title: Rev Mat Iberoam
– volume: 47
  start-page: 307
  issue: 2
  year: 2022
  end-page: 345
  article-title: Blow up of solutions for a Parabolic‐Elliptic Chemotaxis System with gradient dependent chemotactic coefficient
  publication-title: Commun Partial Differ Equ
– ident: e_1_2_6_20_1
  doi: 10.1080/03605302.2021.1975132
– ident: e_1_2_6_5_1
  doi: 10.1007/s00332‐010‐9082‐x
– ident: e_1_2_6_12_1
  doi: 10.1016/j.jtbi.2015.07.023
– ident: e_1_2_6_31_1
  doi: 10.5802/aif.204
– ident: e_1_2_6_2_1
  doi: 10.1016/0022‐5193(70)90092‐5
– ident: e_1_2_6_3_1
  doi: 10.1016/0022‐5193(71)90050‐6
– ident: e_1_2_6_11_1
  doi: 10.1016/j.jtbi.2015.07.023
– ident: e_1_2_6_29_1
  doi: 10.1016/j.jde.2016.05.008
– ident: e_1_2_6_30_1
  doi: 10.1016/j.aml.2020.106351
– ident: e_1_2_6_26_1
  doi: 10.1007/978-3-642-61798-0
– ident: e_1_2_6_19_1
  doi: 10.1016/j.jde.2018.01.040
– ident: e_1_2_6_24_1
  doi: 10.1016/j.jde.2016.07.008
– ident: e_1_2_6_17_1
  doi: 10.1512/iumj.2022.71.9042
– ident: e_1_2_6_8_1
  doi: 10.1371/journal.pcbi.1000890
– ident: e_1_2_6_18_1
  doi: 10.1016/j.jmaa.2022.126376
– ident: e_1_2_6_25_1
– ident: e_1_2_6_6_1
  doi: 10.1007/s00285-008-0201-3
– volume: 105
  start-page: 103
  issue: 3
  year: 2003
  ident: e_1_2_6_4_1
  article-title: From 1970 until present: the Keller‐Segel model in chemotaxis and its consequences
  publication-title: Jahresbericht der Deutschen Mathematiker‐Vereinigung
– ident: e_1_2_6_13_1
  doi: 10.1080/03605302.2016.1277237
– volume: 25
  start-page: 831
  year: 1974
  ident: e_1_2_6_28_1
  article-title: Semilinear second order elliptic equations in L1$$ {L}&amp;#x0005E;1 $$
  publication-title: J Math Soc Japan
– ident: e_1_2_6_14_1
  doi: 10.1090/btran/17
– ident: e_1_2_6_7_1
  doi: 10.1016/0009‐2509(89)85098‐5
– ident: e_1_2_6_32_1
  doi: 10.1016/j.jde.2015.07.019
– volume-title: Partial Differential Equations of Parabolic Type
  year: 1964
  ident: e_1_2_6_27_1
– ident: e_1_2_6_16_1
  doi: 10.1016/j.jde.2019.05.026
– ident: e_1_2_6_23_1
  doi: 10.1080/03605300701319003
– ident: e_1_2_6_22_1
  doi: 10.1080/03605302.2020.1712417
– ident: e_1_2_6_9_1
  doi: 10.4171/rmi/1132
– ident: e_1_2_6_21_1
  doi: 10.1016/j.aml.2022.108299
– ident: e_1_2_6_10_1
  doi: 10.3934/krm.2012.5.51
– ident: e_1_2_6_15_1
  doi: 10.1007/s10440-019-00275-z
SSID ssj0008112
Score 2.347596
Snippet In this article, we study the existence of solutions of a parabolic‐elliptic system of partial differential equations describing the behaviour of a biological...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 9252
SubjectTerms Boundary conditions
bounded solutions
chemotaxis
global existence of solutions
Partial differential equations
Title On the existence of solutions for a parabolic‐elliptic chemotaxis model with flux limitation and logistic source
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.9050
https://www.proquest.com/docview/2811246865
Volume 46
WOSCitedRecordID wos000921317200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1099-1476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008112
  issn: 0170-4214
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEC4k8aAHNVFxYwwliI_DmJmenu7pY1AXD9kYxEBuQ_VjQNhMZCcJHv0J_kZ_iV09sxMFBcHTzKEKmq5Hf_2orwCekaCyVEZmjirKZOGLrKYqZM5qpWzpysolEtdDfXRUn56a4_FVJdfCDPwQ04EbR0bK1xzgZPv9a9LQszN6bXLerm8WRVlz2wYhj6csXBfpppPpYTIpCrkmns3F_lrz96XoGl_-ilLTMjO_-z8DvAd3RnCJB4M3bMGN0G3D7cXEzNpvw9YYzD2-HBmnX92H1YcOowwyLWbC0Hje4uSUGHEtEjJJuGUW4R_fvjOLZ8w1DqPJo60p6mHqqYN8rovt8vIrLrl0KtkdqfM4lBpFleG64AGczN99evM-G5sxZK4UcQ4LSdooK-P6Rc4a650L3jjnRYiIglqdt7p2Ou7NSx0qiigs_ipDwojguZnZQ9jozrvwCNDqUlY-921NTioyNuYNWVuvdStCZdUMXqzt0rhxpNwwY9kMHMuiiVPb8NTO4Okk-WVg5_iDzO7atM0Yn30j2D2kqlU1g-fJiH_VbxaLA_7u_KvgY7jFPenTE4N8FzYuVpfhCdx0Vxef-9Ve8tI92Hz7cX5y-BODTe8d
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEC5CDKgH81BxTWJKEB-HSWZ6erqnySlIQsTdNYcIuQ39GhA2E9lNxGN-Qn6jv8SunkcMGBA8zRyqoOl6ff36CuCNZjrPheKJ1YVOeOaypNSFT6yRQpjc5oWNJK5jOZ2WZ2fqZAn2-7cwLT_EsOFGkRHzNQU4bUjv3bKGnp_rXZXSev0BD0WGnJzxkyENl1k86iR-mISzjPfMsynb6zXv1qJbgPknTI115mj1v0a4Bk86eIkHrT-sw5JvNuDxZOBmXWzAehfOC3zfcU5_eArzLw0GGSRizIii8aLGwS0xIFvUSDThhniEf13fEI9nyDYWg9GDtXXQw9hVB2lnF-vZ1U-c0eOpaHnUjcP2sVFQaQ8MnsHXo8PTj8dJ144hsTkLk5hxLZUwPFQwbY0yzlrvlLWO-YApdC3TWpZWhtV5Ln2hAw4Lv0Jppph31M7sOSw3F41_AWhkzguXurrUlgutTMgcvDROypr5wogRvOsNU9lupNQyY1a1LMusClNb0dSO4PUg-b3l5_iLzFZv26qL0EXFyD-4KEUxgrfRivfqV5PJAX1f_qvgDjw8Pp2Mq_Gn6edNeEQd6uOFg3QLli_nV34bVuyPy2-L-avosr8BNz3xaA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEC7CRkQPaqLimkRLEB-HSWZ6erqnySkYF8XdNYiB3IZ-DQibSdhNxKM_wd-YX2JXzyMKCoKnmUMVNF2P_vpRXwE810znuVA8sbrQCc9clpS68Ik1UgiT27ywkcR1Kufz8uREHa3Bfl8L0_JDDAduFBkxX1OA-3NX712zhp6e6l2V0n59nVMPmRGsH36aHE-HRFxm8bKTGGISzjLec8-mbK_X_X01uoaYvwLVuNJM7v7XGO_BnQ5g4kHrERuw5ptNuD0b2FlXm7DRBfQKX3Ws06_vw_Jjg0EGiRoz4mg8q3FwTAzYFjUSUbghJuGr7z-IyTPkG4vB7MHeOuhh7KuDdLaL9eLyGy6ofCraHnXjsC03CirtlcEDOJ68_fzmXdI1ZEhszsIkZlxLJQwPa5i2RhlnrXfKWsd8QBW6lmktSyvD_jyXvtABiYVfoTRTzDtqaPYQRs1Z4x8BGpnzwqWuLrXlQisTcgcvjZOyZr4wYgwve8NUthspNc1YVC3PMqvC1FY0tWN4Nkietwwdf5DZ7m1bdTG6qhj5BxelKMbwIlrxr_rVbHZA38f_KvgUbh4dTqrp-_mHLbhFLerji4N0G0YXy0u_Azfs14svq-WTzmd_AjsK8n4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+existence+of+solutions+for+a+parabolic%E2%80%90elliptic+chemotaxis+model+with+flux+limitation+and+logistic+source&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Silvia+Sastre%E2%80%90Gomez&rft.au=Tello%2C+Jose+Ignacio&rft.date=2023-05-30&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=46&rft.issue=8&rft.spage=9252&rft.epage=9267&rft_id=info:doi/10.1002%2Fmma.9050&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon