Study on the Composition Design, Microstructure, Wear and Corrosion Resistant of Duplex Stainless Steels Based on Machine Learning
Duplex stainless steels (DSS) had good wear and corrosion resistance, making them potential substitutes instead of martensitic stainless steel as the material for water turbine blades. However, designing a DSS with high wear and corrosion resistance using traditional trial-and-error methods required...
Uloženo v:
| Vydáno v: | Metals and materials international Ročník 30; číslo 12; s. 3402 - 3417 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Seoul
The Korean Institute of Metals and Materials
01.12.2024
대한금속·재료학회 |
| Témata: | |
| ISSN: | 1598-9623, 2005-4149 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Duplex stainless steels (DSS) had good wear and corrosion resistance, making them potential substitutes instead of martensitic stainless steel as the material for water turbine blades. However, designing a DSS with high wear and corrosion resistance using traditional trial-and-error methods required a significant amount of time and cost. This study proposed a material design method based on machine learning (ML) to accelerate the development of novel DSS. A composition-process-performance database for DSS was established, and four ML model such as K-Nearest Neighbor Regressor (KNR), Ridge Regression (RR), Decision Tree (DT), and Random Forest (RF) were employed to train the database. Predictions of wear and corrosion resistance for DSS were achieved. The predicted and actual values of them demonstrated good consistency. Among the four models, the RF model for microhardness and self-corrosion potential exhibited the best predictive performance with an
R
2
value of 0.90 and 0.87, respectively. Employing the RF model for three rounds of selection obtained three DSS compositions with high wear and corrosion resistance among 69,120 composition-process combinations, then named as 1Cr29Ni11Mo3.5N, 1Cr29Ni8Mo4.5N, and 1Cr29Ni10Mo4.5N. These optimized compositions were further investigated through laser melting deposition (LMD) corresponding samples. Experimental results indicated that the volume ratio of ferrite to austenite in the three samples all reached 3:7. Specifically, 1Cr29Ni11Mo3.5N showed a microhardness of 356 HV
0.2
, good wear resistance (1.2579 × 10
–13
m
3
/Nm of wear rate), and a self-corrosion potential of − 0.12494 V. 1Cr29Ni11Mo3.5N exhibiting high wear and corrosion resistance.
Graphical Abstract |
|---|---|
| AbstractList | Duplex stainless steels (DSS) had good wear and corrosion resistance, making them potential substitutes instead of martensitic stainless steel as the material for water turbine blades. However, designing a DSS with high wear and corrosion resistance using traditional trial-and-error methods required a significant amount of time and cost. This study proposed a material design method based on machine learning (ML) to accelerate the development of novel DSS. A composition-process-performance database for DSS was established, and four ML model such as K-Nearest Neighbor Regressor (KNR), Ridge Regression (RR), Decision Tree (DT), and Random Forest (RF) were employed to train the database. Predictions of wear and corrosion resistance for DSS were achieved. The predicted and actual values of them demonstrated good consistency. Among the four models, the RF model for microhardness and self-corrosion potential exhibited the best predictive performance with an R2 value of 0.90 and 0.87, respectively. Employing the RF model for three rounds of selection obtained three DSS compositions with high wear and corrosion resistance among 69,120 composition-process combinations, then named as 1Cr29Ni11Mo3.5N, 1Cr29Ni8Mo4.5N, and 1Cr29Ni10Mo4.5N. These optimized compositions were further investigated through laser melting deposition (LMD) corresponding samples. Experimental results indicated that the volume ratio of ferrite to austenite in the three samples all reached 3:7. Specifically, 1Cr29Ni11Mo3.5N showed a microhardness of 356 HV0.2, good wear resistance (1.2579 × 10– 13 m3/ Nm of wear rate), and a self-corrosion potential of − 0.12494 V. 1Cr29Ni11Mo3.5N exhibiting high wear and corrosion resistance. KCI Citation Count: 0 Duplex stainless steels (DSS) had good wear and corrosion resistance, making them potential substitutes instead of martensitic stainless steel as the material for water turbine blades. However, designing a DSS with high wear and corrosion resistance using traditional trial-and-error methods required a significant amount of time and cost. This study proposed a material design method based on machine learning (ML) to accelerate the development of novel DSS. A composition-process-performance database for DSS was established, and four ML model such as K-Nearest Neighbor Regressor (KNR), Ridge Regression (RR), Decision Tree (DT), and Random Forest (RF) were employed to train the database. Predictions of wear and corrosion resistance for DSS were achieved. The predicted and actual values of them demonstrated good consistency. Among the four models, the RF model for microhardness and self-corrosion potential exhibited the best predictive performance with an R 2 value of 0.90 and 0.87, respectively. Employing the RF model for three rounds of selection obtained three DSS compositions with high wear and corrosion resistance among 69,120 composition-process combinations, then named as 1Cr29Ni11Mo3.5N, 1Cr29Ni8Mo4.5N, and 1Cr29Ni10Mo4.5N. These optimized compositions were further investigated through laser melting deposition (LMD) corresponding samples. Experimental results indicated that the volume ratio of ferrite to austenite in the three samples all reached 3:7. Specifically, 1Cr29Ni11Mo3.5N showed a microhardness of 356 HV 0.2 , good wear resistance (1.2579 × 10 –13 m 3 /Nm of wear rate), and a self-corrosion potential of − 0.12494 V. 1Cr29Ni11Mo3.5N exhibiting high wear and corrosion resistance. Graphical Abstract |
| Author | Liang, Jing Liu, Changsheng Yin, Xiuyuan Chen, Suiyuan Lv, Nanying Xie, Zhina |
| Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0002-3242-8234 surname: Liang fullname: Liang, Jing email: liangj@atm.neu.edu.cn organization: Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Key Laboratory for Additive Manufacturing and Remanufacturing Materials, School of Materials Science and Engineering, Northeastern University – sequence: 2 givenname: Nanying surname: Lv fullname: Lv, Nanying organization: Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Key Laboratory for Additive Manufacturing and Remanufacturing Materials, School of Materials Science and Engineering, Northeastern University – sequence: 3 givenname: Zhina surname: Xie fullname: Xie, Zhina organization: Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Key Laboratory for Additive Manufacturing and Remanufacturing Materials, School of Materials Science and Engineering, Northeastern University – sequence: 4 givenname: Xiuyuan surname: Yin fullname: Yin, Xiuyuan organization: Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Key Laboratory for Additive Manufacturing and Remanufacturing Materials, School of Materials Science and Engineering, Northeastern University – sequence: 5 givenname: Suiyuan surname: Chen fullname: Chen, Suiyuan organization: Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Key Laboratory for Additive Manufacturing and Remanufacturing Materials, School of Materials Science and Engineering, Northeastern University – sequence: 6 givenname: Changsheng surname: Liu fullname: Liu, Changsheng organization: Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Key Laboratory for Additive Manufacturing and Remanufacturing Materials, School of Materials Science and Engineering, Northeastern University |
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003143311$$DAccess content in National Research Foundation of Korea (NRF) |
| BookMark | eNp9kMtOwzAQRS0EEuXxA6y8RgT8SJxkCeUpFSHRIpaW40xal2BXtiPBli_HoaxYsJoZ-dwZ-RygXessIHRCyTklpLwIlBU5yQjLM0JLmmf1DpowQoosp3m9iya0qKusFozvo4MQ1oQIyimboK95HNpP7CyOK8BT975xwUST5msIZmnP8KPR3oXoBx0HD2f4FZTHyrYJ9ulhRJ8TGqKyEbsOXw-bHj7wPCpjewghdQB9wFcqQDseelR6ZSzgWVpkjV0eob1O9QGOf-sherm9WUzvs9nT3cP0cpZpzkTMoKKEs7YreMWhqLgQIm-5qNtGlBXQQkOjyxJyArxqWVN2gkJLKmhIp5TWDT9Ep9u91nfyTRvplPmpSyffvLx8XjxISkRBGSkTzLbw-PngoZMbb96V_0yIHJXLrXKZlMsf5bJOoepPSJuoRpvRK9P_H-XbaEh37BK8XLvB2-Tjv9Q3ToGZbw |
| CitedBy_id | crossref_primary_10_1007_s10409_025_24895_x crossref_primary_10_1016_j_jmrt_2025_06_064 crossref_primary_10_1016_j_apmate_2025_100342 crossref_primary_10_1007_s12540_024_01837_z |
| Cites_doi | 10.1007/s12613-020-1984-5 10.1016/j.xcrp.2023.101720 10.1016/S0921-5093(02)00841-9 10.1016/j.surfcoat.2023.129295 10.1016/j.calphad.2023.102587 10.1016/j.engfailanal.2021.105227 10.1016/j.surfcoat.2022.128787 10.1016/j.mtcomm.2023.107285 10.1016/j.matchemphys.2005.10.016 10.1016/j.jmrt.2023.08.139 10.1007/s12540-021-01035-1 10.1016/j.msea.2021.142557 10.1016/j.jmrt.2020.05.057 10.1016/j.oceaneng.2021.109863 10.1016/j.matchar.2023.112740 10.1007/s12540-022-01360-z 10.1016/j.actamat.2023.118954 10.1016/j.corsci.2015.07.014 10.1016/j.matdes.2021.109929 10.1016/j.ijrmhm.2023.106420 10.1007/s11665-023-07851-3 10.1007/s41230-018-7226-z 10.1016/j.oceaneng.2022.111663 10.1016/j.mtcomm.2023.107774 10.1016/j.ensm.2023.103090 10.1016/j.matpr.2023.03.418 10.1016/j.ijrmhm.2021.105721 10.1016/j.renene.2018.11.066 10.1016/j.mtcomm.2023.107560 10.1007/s11665-016-2470-0 10.1080/00986441003626151 10.1016/j.powtec.2023.118800 10.1016/j.mtcomm.2022.104903 10.1016/j.heliyon.2023.e15144 |
| ContentType | Journal Article |
| Copyright | The Author(s) under exclusive licence to The Korean Institute of Metals and Materials 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s) under exclusive licence to The Korean Institute of Metals and Materials 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION ACYCR |
| DOI | 10.1007/s12540-024-01714-9 |
| DatabaseName | CrossRef Korean Citation Index |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2005-4149 |
| EndPage | 3417 |
| ExternalDocumentID | oai_kci_go_kr_ARTI_10651207 10_1007_s12540_024_01714_9 |
| GrantInformation_xml | – fundername: Joint Founds of NSFC-Liaoning grantid: U1508213 – fundername: National Key R&D Program of China grantid: 2016YFB1100203 |
| GroupedDBID | 06D 0R~ 0VY 123 1N0 2.D 203 29M 2JY 2KG 2VQ 30V 4.4 406 408 40D 5VS 67Z 8FE 8FG 96X 9ZL AAAVM AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN BA0 BENPR BGLVJ CAG CCPQU COF CS3 CSCUP D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZB HZ~ I0C IKXTQ IWAJR IXC IXD I~X J-C J0Z JBSCW JZLTJ KB. KOV KVFHK LLZTM MA- MZR N2Q NDZJH NPVJJ NQJWS O9- O93 O9G O9I O9J P19 P2P P9N PDBOC PHGZM PHGZT PQGLB PT4 PT5 Q2X R89 R9I RLLFE ROL RSV S1Z S26 S27 S28 S3B SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 T16 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 Z45 ZMTXR ZZE ~A9 AAYXX AFFHD CITATION M7S PTHSS ACYCR |
| ID | FETCH-LOGICAL-c326t-e81032df5383e5836664d369db678e15cebc77e40e38d2b7f61ed08eb0faaccb3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001247454100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1598-9623 |
| IngestDate | Fri Jul 04 03:48:32 EDT 2025 Tue Nov 18 22:19:39 EST 2025 Sat Nov 29 02:31:03 EST 2025 Mon Jul 21 06:09:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | Duplex stainless steel σ Phase Laser melting deposition Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c326t-e81032df5383e5836664d369db678e15cebc77e40e38d2b7f61ed08eb0faaccb3 |
| ORCID | 0000-0002-3242-8234 |
| PageCount | 16 |
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10651207 crossref_primary_10_1007_s12540_024_01714_9 crossref_citationtrail_10_1007_s12540_024_01714_9 springer_journals_10_1007_s12540_024_01714_9 |
| PublicationCentury | 2000 |
| PublicationDate | 20241200 2024-12-00 2024-12 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 20241200 |
| PublicationDecade | 2020 |
| PublicationPlace | Seoul |
| PublicationPlace_xml | – name: Seoul |
| PublicationTitle | Metals and materials international |
| PublicationTitleAbbrev | Met. Mater. Int |
| PublicationYear | 2024 |
| Publisher | The Korean Institute of Metals and Materials 대한금속·재료학회 |
| Publisher_xml | – name: The Korean Institute of Metals and Materials – name: 대한금속·재료학회 |
| References | J Wu (1714_CR31) 2023; 457 P Nithin Raj (1714_CR35) 2020; 27 SK Xi (1714_CR17) 2024; 38 MK Mishra (1714_CR37) 2017; 26 H Wu (1714_CR6) 2022; 102 1714_CR8 R Kumar (1714_CR2) 2023; 428 C Wang (1714_CR28) 2020; 36 QS Wang (1714_CR13) 2023; 4 RY Song (1714_CR3) 2021; 240 J Liang (1714_CR23) 2022; 446 X Wang (1714_CR27) 2019; 9 SB Pan (1714_CR20) 2021; 209 CY Ma (1714_CR32) 2020; 9 E Capello (1714_CR21) 2003; 351 DR Jiang (1714_CR29) 2022; 833 S-J Kim (1714_CR4) 2019; 134 APO Costa (1714_CR5) 2022; 33 ML Adam (1714_CR14) 2024; 65 J Liang (1714_CR26) 2021; 28 JM Huo (1714_CR30) 2023; 32 QS Ma (1714_CR15) 2023; 26 1714_CR11 A Moses (1714_CR19) 2023; 37 N Sayyar (1714_CR24) 2023; 9 R Selvabharathi (1714_CR34) 2023; 37 J Liang (1714_CR10) 2023; 29 1714_CR36 J Alphonsa (1714_CR9) 2015; 100 ZH Zhu (1714_CR33) 2018; 15 J-B Lee (1714_CR7) 2006; 99 M Naseem (1714_CR1) 2022; 257 P Korotaev (1714_CR12) 2023; 82 JL Gao (1714_CR16) 2023; 198 M Adeli (1714_CR25) 2010; 197 H Chen (1714_CR22) 2021; 33 E Ma (1714_CR18) 2023; 117 |
| References_xml | – volume: 27 start-page: 954 year: 2020 ident: 1714_CR35 publication-title: Int. J Min. Met. Mater. doi: 10.1007/s12613-020-1984-5 – volume: 4 year: 2023 ident: 1714_CR13 publication-title: Cell Rep. Phys. Sci. doi: 10.1016/j.xcrp.2023.101720 – volume: 351 start-page: 334 year: 2003 ident: 1714_CR21 publication-title: Mater. Sci. Eng. A-Struct. Mater. Proper. Microstruct. Process. doi: 10.1016/S0921-5093(02)00841-9 – volume: 457 year: 2023 ident: 1714_CR31 publication-title: SURF COAT TECH. doi: 10.1016/j.surfcoat.2023.129295 – volume: 82 start-page: 102587 year: 2023 ident: 1714_CR12 publication-title: Calphad-Comput. Coupling Ph. Diagrams Thermochem. doi: 10.1016/j.calphad.2023.102587 – ident: 1714_CR8 doi: 10.1016/j.engfailanal.2021.105227 – volume: 446 year: 2022 ident: 1714_CR23 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2022.128787 – volume: 37 start-page: 107285 year: 2023 ident: 1714_CR19 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2023.107285 – volume: 99 start-page: 224 year: 2006 ident: 1714_CR7 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2005.10.016 – volume: 26 start-page: 4168 year: 2023 ident: 1714_CR15 publication-title: J. Mater. Res. Technol-JMRT. doi: 10.1016/j.jmrt.2023.08.139 – volume: 28 start-page: 216 year: 2021 ident: 1714_CR26 publication-title: Met. Mater.-Int. doi: 10.1007/s12540-021-01035-1 – volume: 833 year: 2022 ident: 1714_CR29 publication-title: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. doi: 10.1016/j.msea.2021.142557 – volume: 9 start-page: 8296 year: 2020 ident: 1714_CR32 publication-title: J Mater. Res. Technol. doi: 10.1016/j.jmrt.2020.05.057 – volume: 240 year: 2021 ident: 1714_CR3 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109863 – volume: 198 year: 2023 ident: 1714_CR16 publication-title: Mater Charact doi: 10.1016/j.matchar.2023.112740 – volume: 29 start-page: 2052 year: 2023 ident: 1714_CR10 publication-title: Met. Mater.-Int. doi: 10.1007/s12540-022-01360-z – ident: 1714_CR11 doi: 10.1016/j.actamat.2023.118954 – volume: 100 start-page: 121 year: 2015 ident: 1714_CR9 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2015.07.014 – volume: 9 start-page: 1009 year: 2019 ident: 1714_CR27 publication-title: Express. – volume: 209 year: 2021 ident: 1714_CR20 publication-title: Mater. Des. doi: 10.1016/j.matdes.2021.109929 – volume: 33 start-page: 395 year: 2021 ident: 1714_CR22 publication-title: J. Laser Appl. – volume: 117 year: 2023 ident: 1714_CR18 publication-title: Int. J. Refract. Met. Hard Mat. doi: 10.1016/j.ijrmhm.2023.106420 – volume: 32 start-page: 10104 year: 2023 ident: 1714_CR30 publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-023-07851-3 – volume: 15 start-page: 182 year: 2018 ident: 1714_CR33 publication-title: China Foundry doi: 10.1007/s41230-018-7226-z – volume: 257 year: 2022 ident: 1714_CR1 publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111663 – volume: 38 year: 2024 ident: 1714_CR17 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2023.107774 – volume: 65 year: 2024 ident: 1714_CR14 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2023.103090 – ident: 1714_CR36 doi: 10.1016/j.matpr.2023.03.418 – volume: 102 year: 2022 ident: 1714_CR6 publication-title: J. Chen. Int. J. Refract. Met. Hard Mat. doi: 10.1016/j.ijrmhm.2021.105721 – volume: 134 start-page: 807 year: 2019 ident: 1714_CR4 publication-title: Renew. Energy doi: 10.1016/j.renene.2018.11.066 – volume: 37 year: 2023 ident: 1714_CR34 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2023.107560 – volume: 26 start-page: 849 year: 2017 ident: 1714_CR37 publication-title: Shen. J. Mater. Eng. Perform. doi: 10.1007/s11665-016-2470-0 – volume: 197 start-page: 1404 year: 2010 ident: 1714_CR25 publication-title: Chem. Eng. Commun. doi: 10.1080/00986441003626151 – volume: 36 year: 2020 ident: 1714_CR28 publication-title: Addit. Manuf. – volume: 428 year: 2023 ident: 1714_CR2 publication-title: Powder Technol. doi: 10.1016/j.powtec.2023.118800 – volume: 33 year: 2022 ident: 1714_CR5 publication-title: Mater. Today Commun. doi: 10.1016/j.mtcomm.2022.104903 – volume: 9 year: 2023 ident: 1714_CR24 publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e15144 |
| SSID | ssj0061312 |
| Score | 2.3767052 |
| Snippet | Duplex stainless steels (DSS) had good wear and corrosion resistance, making them potential substitutes instead of martensitic stainless steel as the material... |
| SourceID | nrf crossref springer |
| SourceType | Open Website Enrichment Source Index Database Publisher |
| StartPage | 3402 |
| SubjectTerms | Characterization and Evaluation of Materials Chemistry and Materials Science Engineering Thermodynamics Heat and Mass Transfer Machines Magnetic Materials Magnetism Manufacturing Materials Science Metallic Materials Processes Solid Mechanics 재료공학 |
| Title | Study on the Composition Design, Microstructure, Wear and Corrosion Resistant of Duplex Stainless Steels Based on Machine Learning |
| URI | https://link.springer.com/article/10.1007/s12540-024-01714-9 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003143311 |
| Volume | 30 |
| WOSCitedRecordID | wos001247454100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Metals and Materials International, 2024, 30(12), , pp.3402-3417 |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 2005-4149 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061312 issn: 1598-9623 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66etCDb3F9EdCbG9g-0qZHn-hhRXzfQptOlmWXdunuil795U7S1geKoKcWOklLJplv0pl8Q8h-6ice9x3NVBgEzBdBzASPfKY4R_wRLgiV2GIT4eWleHyMrqpDYaM6270OSVpL_XHYzTVBfMQUZqt2s2iazCDcCVOw4frmvra_iE9ljJNHuJQR3aujMj_38QWOprNCf4uIWqA5W_zfJy6RhcqxpIflTFgmU5CtkPlPdIOr5NUkDb7QPKPo9VFjCaqMLXpi8zhatGPS80pK2UkBLfqA64DGWYrCBT4wotcoajzKMc01PZkMB_BMb8z_hQHaTLwDBFt6hNiYmhd1bK4m0IrGtbtG7s5Ob4_PWVWDgSl07MYMhGHcSzXaRQ-48HC346deEKUJohw4XEGiwhD8NngidZNQBw6kbQFJW8exUom3ThpZnsEGoYqrCFTM3SD00VI4QqN2Epwojq_DWMdN4tSqkKoiKDd1Mgbyg1rZjK_E8ZV2fGXUJAfvbYYlPcev0nuoYdlXPWlYtc21m8t-IXHvcIGNAvR-2mGTtGrtympBj37pdPNv4ltkzjUTxGbEbJMGqhR2yKx6GvdGxa6dyW_M5-wk |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6Vh0Q5QHlULFBqCW6spU1iJ86Rp0BlVxXQws1KnPEKscqi7FK11_5yxt6Eh1ohwSmRMnYiz3i-cWb8GWCnEHkkRWC5SeKYCxVnXMlUcCMl4Y8KUZncHzaR9Hrq-jr9Xm8KGzXV7k1K0nvqp81uoUviE6Zwf2o3T6dgRhBiOcb884ufjf8lfJrkOGVKU5nQvd4q8_8-XsDRVFnZfzKiHmiOF9_3iZ9goQ4s2d7EEpbgA5bLMP-MbnAF_rqiwT9sWDKK-pjzBHXFFjv0dRxt1nXleRNK2fsK2-yK5gHLyoKEK3rgRM9J1EWUYza07PD-boC_2YX7vzAgn0l3SGDL9gkbC_eirq_VRFbTuPZX4cfx0eXBCa_PYOCGArsxR-UY9wpLfjFCqSJa7YgiitMiJ5TDQBrMTZKg6GCkijBPbBxg0VGYd2yWGZNHn2G6HJa4BsxIk6LJZBgngjxFoCxpJydDCYRNMpu1IGhUoU1NUO7OyRjoJ2plN76axlf78dVpC3Yf29xN6Dleld4mDetbc6Mdq7a79of6ttK0djilRjFFP52kBe1Gu7qe0KNXOl1_m_hXmDu57J7ps9Petw34GDpj8dUxmzBN6sUvMGt-jW9G1Za36gfmZe8I |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RghAceJQilqcluLFWN4mdOEdgWVFBVxWFtjcrscdV1VV2lW4RXPnlzDhZWgSqVHFKpIydyDOebxyPvwF45VWdaZUE6Yo8l8rklTS6VNJpTfhjUjSujsUmiunUHB6WuxdO8cds99WWZHemgVmamuXWwoet84NvKW_oE77IWMFblmtwXXEiPa_X9_ZXvpiwqtvv1CVNa0L6_tjMv_v4A5rWmjb8tTsaQWdy9_8_9x7c6QNO8aazkPtwDZsNuH2BhvAB_ORkwh9i3giKBgV7iD6TS4xjfsdQ7HDaXkc1e9biUBzQ_BBV40m4pQcs-plEOdJcinkQ47PFDL-LPf7vMCNfSndIICzeEmZ6ftFOzOFE0dO7Hm3C18n7L-8-yL42g3QU8C0lGmbi84H8ZYbaZLQKUj7LS18T-mGiHdauKFCNMDM-rYuQJ-hHButRqCrn6uwhrDfzBh-BcNqV6Cqd5oUiD5KYQJqqyYASFYoqVANIVmqxricu5_oZM3tOuczja2l8bRxfWw7g9e82i46241Lpl6Rte-KOLbNt8_Vobk9aS2uKbWqUU1Q0KgYwXGna9hP99JJOH19N_AXc3B1P7Kft6ccncCtlW4lJM09hnbSLz-CG-7Y8Pm2fRwP_BeU19-w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+the+Composition+Design%2C+Microstructure%2C+Wear+and+Corrosion+Resistant+of+Duplex+Stainless+Steels+Based+on+Machine+Learning&rft.jtitle=Metals+and+materials+international&rft.au=Jing+Liang&rft.au=Nanying+Lv&rft.au=Zhina+Xie&rft.au=Xiuyuan+Yin&rft.date=2024-12-01&rft.pub=%EB%8C%80%ED%95%9C%EA%B8%88%EC%86%8D%C2%B7%EC%9E%AC%EB%A3%8C%ED%95%99%ED%9A%8C&rft.issn=1598-9623&rft.eissn=2005-4149&rft.spage=3402&rft.epage=3417&rft_id=info:doi/10.1007%2Fs12540-024-01714-9&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10651207 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-9623&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-9623&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-9623&client=summon |