Study on the Composition Design, Microstructure, Wear and Corrosion Resistant of Duplex Stainless Steels Based on Machine Learning

Duplex stainless steels (DSS) had good wear and corrosion resistance, making them potential substitutes instead of martensitic stainless steel as the material for water turbine blades. However, designing a DSS with high wear and corrosion resistance using traditional trial-and-error methods required...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Metals and materials international Ročník 30; číslo 12; s. 3402 - 3417
Hlavní autoři: Liang, Jing, Lv, Nanying, Xie, Zhina, Yin, Xiuyuan, Chen, Suiyuan, Liu, Changsheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Seoul The Korean Institute of Metals and Materials 01.12.2024
대한금속·재료학회
Témata:
ISSN:1598-9623, 2005-4149
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Duplex stainless steels (DSS) had good wear and corrosion resistance, making them potential substitutes instead of martensitic stainless steel as the material for water turbine blades. However, designing a DSS with high wear and corrosion resistance using traditional trial-and-error methods required a significant amount of time and cost. This study proposed a material design method based on machine learning (ML) to accelerate the development of novel DSS. A composition-process-performance database for DSS was established, and four ML model such as K-Nearest Neighbor Regressor (KNR), Ridge Regression (RR), Decision Tree (DT), and Random Forest (RF) were employed to train the database. Predictions of wear and corrosion resistance for DSS were achieved. The predicted and actual values of them demonstrated good consistency. Among the four models, the RF model for microhardness and self-corrosion potential exhibited the best predictive performance with an R 2 value of 0.90 and 0.87, respectively. Employing the RF model for three rounds of selection obtained three DSS compositions with high wear and corrosion resistance among 69,120 composition-process combinations, then named as 1Cr29Ni11Mo3.5N, 1Cr29Ni8Mo4.5N, and 1Cr29Ni10Mo4.5N. These optimized compositions were further investigated through laser melting deposition (LMD) corresponding samples. Experimental results indicated that the volume ratio of ferrite to austenite in the three samples all reached 3:7. Specifically, 1Cr29Ni11Mo3.5N showed a microhardness of 356 HV 0.2 , good wear resistance (1.2579 × 10 –13 m 3 /Nm of wear rate), and a self-corrosion potential of − 0.12494 V. 1Cr29Ni11Mo3.5N exhibiting high wear and corrosion resistance. Graphical Abstract
AbstractList Duplex stainless steels (DSS) had good wear and corrosion resistance, making them potential substitutes instead of martensitic stainless steel as the material for water turbine blades. However, designing a DSS with high wear and corrosion resistance using traditional trial-and-error methods required a significant amount of time and cost. This study proposed a material design method based on machine learning (ML) to accelerate the development of novel DSS. A composition-process-performance database for DSS was established, and four ML model such as K-Nearest Neighbor Regressor (KNR), Ridge Regression (RR), Decision Tree (DT), and Random Forest (RF) were employed to train the database. Predictions of wear and corrosion resistance for DSS were achieved. The predicted and actual values of them demonstrated good consistency. Among the four models, the RF model for microhardness and self-corrosion potential exhibited the best predictive performance with an R2 value of 0.90 and 0.87, respectively. Employing the RF model for three rounds of selection obtained three DSS compositions with high wear and corrosion resistance among 69,120 composition-process combinations, then named as 1Cr29Ni11Mo3.5N, 1Cr29Ni8Mo4.5N, and 1Cr29Ni10Mo4.5N. These optimized compositions were further investigated through laser melting deposition (LMD) corresponding samples. Experimental results indicated that the volume ratio of ferrite to austenite in the three samples all reached 3:7. Specifically, 1Cr29Ni11Mo3.5N showed a microhardness of 356 HV0.2, good wear resistance (1.2579 × 10– 13 m3/ Nm of wear rate), and a self-corrosion potential of − 0.12494 V. 1Cr29Ni11Mo3.5N exhibiting high wear and corrosion resistance. KCI Citation Count: 0
Duplex stainless steels (DSS) had good wear and corrosion resistance, making them potential substitutes instead of martensitic stainless steel as the material for water turbine blades. However, designing a DSS with high wear and corrosion resistance using traditional trial-and-error methods required a significant amount of time and cost. This study proposed a material design method based on machine learning (ML) to accelerate the development of novel DSS. A composition-process-performance database for DSS was established, and four ML model such as K-Nearest Neighbor Regressor (KNR), Ridge Regression (RR), Decision Tree (DT), and Random Forest (RF) were employed to train the database. Predictions of wear and corrosion resistance for DSS were achieved. The predicted and actual values of them demonstrated good consistency. Among the four models, the RF model for microhardness and self-corrosion potential exhibited the best predictive performance with an R 2 value of 0.90 and 0.87, respectively. Employing the RF model for three rounds of selection obtained three DSS compositions with high wear and corrosion resistance among 69,120 composition-process combinations, then named as 1Cr29Ni11Mo3.5N, 1Cr29Ni8Mo4.5N, and 1Cr29Ni10Mo4.5N. These optimized compositions were further investigated through laser melting deposition (LMD) corresponding samples. Experimental results indicated that the volume ratio of ferrite to austenite in the three samples all reached 3:7. Specifically, 1Cr29Ni11Mo3.5N showed a microhardness of 356 HV 0.2 , good wear resistance (1.2579 × 10 –13 m 3 /Nm of wear rate), and a self-corrosion potential of − 0.12494 V. 1Cr29Ni11Mo3.5N exhibiting high wear and corrosion resistance. Graphical Abstract
Author Liang, Jing
Liu, Changsheng
Yin, Xiuyuan
Chen, Suiyuan
Lv, Nanying
Xie, Zhina
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0002-3242-8234
  surname: Liang
  fullname: Liang, Jing
  email: liangj@atm.neu.edu.cn
  organization: Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Key Laboratory for Additive Manufacturing and Remanufacturing Materials, School of Materials Science and Engineering, Northeastern University
– sequence: 2
  givenname: Nanying
  surname: Lv
  fullname: Lv, Nanying
  organization: Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Key Laboratory for Additive Manufacturing and Remanufacturing Materials, School of Materials Science and Engineering, Northeastern University
– sequence: 3
  givenname: Zhina
  surname: Xie
  fullname: Xie, Zhina
  organization: Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Key Laboratory for Additive Manufacturing and Remanufacturing Materials, School of Materials Science and Engineering, Northeastern University
– sequence: 4
  givenname: Xiuyuan
  surname: Yin
  fullname: Yin, Xiuyuan
  organization: Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Key Laboratory for Additive Manufacturing and Remanufacturing Materials, School of Materials Science and Engineering, Northeastern University
– sequence: 5
  givenname: Suiyuan
  surname: Chen
  fullname: Chen, Suiyuan
  organization: Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Key Laboratory for Additive Manufacturing and Remanufacturing Materials, School of Materials Science and Engineering, Northeastern University
– sequence: 6
  givenname: Changsheng
  surname: Liu
  fullname: Liu, Changsheng
  organization: Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Key Laboratory for Additive Manufacturing and Remanufacturing Materials, School of Materials Science and Engineering, Northeastern University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003143311$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kMtOwzAQRS0EEuXxA6y8RgT8SJxkCeUpFSHRIpaW40xal2BXtiPBli_HoaxYsJoZ-dwZ-RygXessIHRCyTklpLwIlBU5yQjLM0JLmmf1DpowQoosp3m9iya0qKusFozvo4MQ1oQIyimboK95HNpP7CyOK8BT975xwUST5msIZmnP8KPR3oXoBx0HD2f4FZTHyrYJ9ulhRJ8TGqKyEbsOXw-bHj7wPCpjewghdQB9wFcqQDseelR6ZSzgWVpkjV0eob1O9QGOf-sherm9WUzvs9nT3cP0cpZpzkTMoKKEs7YreMWhqLgQIm-5qNtGlBXQQkOjyxJyArxqWVN2gkJLKmhIp5TWDT9Ep9u91nfyTRvplPmpSyffvLx8XjxISkRBGSkTzLbw-PngoZMbb96V_0yIHJXLrXKZlMsf5bJOoepPSJuoRpvRK9P_H-XbaEh37BK8XLvB2-Tjv9Q3ToGZbw
CitedBy_id crossref_primary_10_1007_s10409_025_24895_x
crossref_primary_10_1016_j_jmrt_2025_06_064
crossref_primary_10_1016_j_apmate_2025_100342
crossref_primary_10_1007_s12540_024_01837_z
Cites_doi 10.1007/s12613-020-1984-5
10.1016/j.xcrp.2023.101720
10.1016/S0921-5093(02)00841-9
10.1016/j.surfcoat.2023.129295
10.1016/j.calphad.2023.102587
10.1016/j.engfailanal.2021.105227
10.1016/j.surfcoat.2022.128787
10.1016/j.mtcomm.2023.107285
10.1016/j.matchemphys.2005.10.016
10.1016/j.jmrt.2023.08.139
10.1007/s12540-021-01035-1
10.1016/j.msea.2021.142557
10.1016/j.jmrt.2020.05.057
10.1016/j.oceaneng.2021.109863
10.1016/j.matchar.2023.112740
10.1007/s12540-022-01360-z
10.1016/j.actamat.2023.118954
10.1016/j.corsci.2015.07.014
10.1016/j.matdes.2021.109929
10.1016/j.ijrmhm.2023.106420
10.1007/s11665-023-07851-3
10.1007/s41230-018-7226-z
10.1016/j.oceaneng.2022.111663
10.1016/j.mtcomm.2023.107774
10.1016/j.ensm.2023.103090
10.1016/j.matpr.2023.03.418
10.1016/j.ijrmhm.2021.105721
10.1016/j.renene.2018.11.066
10.1016/j.mtcomm.2023.107560
10.1007/s11665-016-2470-0
10.1080/00986441003626151
10.1016/j.powtec.2023.118800
10.1016/j.mtcomm.2022.104903
10.1016/j.heliyon.2023.e15144
ContentType Journal Article
Copyright The Author(s) under exclusive licence to The Korean Institute of Metals and Materials 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s) under exclusive licence to The Korean Institute of Metals and Materials 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s12540-024-01714-9
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2005-4149
EndPage 3417
ExternalDocumentID oai_kci_go_kr_ARTI_10651207
10_1007_s12540_024_01714_9
GrantInformation_xml – fundername: Joint Founds of NSFC-Liaoning
  grantid: U1508213
– fundername: National Key R&D Program of China
  grantid: 2016YFB1100203
GroupedDBID 06D
0R~
0VY
123
1N0
2.D
203
29M
2JY
2KG
2VQ
30V
4.4
406
408
40D
5VS
67Z
8FE
8FG
96X
9ZL
AAAVM
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
BA0
BENPR
BGLVJ
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
I~X
J-C
J0Z
JBSCW
JZLTJ
KB.
KOV
KVFHK
LLZTM
MA-
MZR
N2Q
NDZJH
NPVJJ
NQJWS
O9-
O93
O9G
O9I
O9J
P19
P2P
P9N
PDBOC
PHGZM
PHGZT
PQGLB
PT4
PT5
Q2X
R89
R9I
RLLFE
ROL
RSV
S1Z
S26
S27
S28
S3B
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T16
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
Z45
ZMTXR
ZZE
~A9
AAYXX
AFFHD
CITATION
M7S
PTHSS
ACYCR
ID FETCH-LOGICAL-c326t-e81032df5383e5836664d369db678e15cebc77e40e38d2b7f61ed08eb0faaccb3
IEDL.DBID RSV
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001247454100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1598-9623
IngestDate Fri Jul 04 03:48:32 EDT 2025
Tue Nov 18 22:19:39 EST 2025
Sat Nov 29 02:31:03 EST 2025
Mon Jul 21 06:09:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Duplex stainless steel
σ Phase
Laser melting deposition
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-e81032df5383e5836664d369db678e15cebc77e40e38d2b7f61ed08eb0faaccb3
ORCID 0000-0002-3242-8234
PageCount 16
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10651207
crossref_primary_10_1007_s12540_024_01714_9
crossref_citationtrail_10_1007_s12540_024_01714_9
springer_journals_10_1007_s12540_024_01714_9
PublicationCentury 2000
PublicationDate 20241200
2024-12-00
2024-12
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 20241200
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle Metals and materials international
PublicationTitleAbbrev Met. Mater. Int
PublicationYear 2024
Publisher The Korean Institute of Metals and Materials
대한금속·재료학회
Publisher_xml – name: The Korean Institute of Metals and Materials
– name: 대한금속·재료학회
References J Wu (1714_CR31) 2023; 457
P Nithin Raj (1714_CR35) 2020; 27
SK Xi (1714_CR17) 2024; 38
MK Mishra (1714_CR37) 2017; 26
H Wu (1714_CR6) 2022; 102
1714_CR8
R Kumar (1714_CR2) 2023; 428
C Wang (1714_CR28) 2020; 36
QS Wang (1714_CR13) 2023; 4
RY Song (1714_CR3) 2021; 240
J Liang (1714_CR23) 2022; 446
X Wang (1714_CR27) 2019; 9
SB Pan (1714_CR20) 2021; 209
CY Ma (1714_CR32) 2020; 9
E Capello (1714_CR21) 2003; 351
DR Jiang (1714_CR29) 2022; 833
S-J Kim (1714_CR4) 2019; 134
APO Costa (1714_CR5) 2022; 33
ML Adam (1714_CR14) 2024; 65
J Liang (1714_CR26) 2021; 28
JM Huo (1714_CR30) 2023; 32
QS Ma (1714_CR15) 2023; 26
1714_CR11
A Moses (1714_CR19) 2023; 37
N Sayyar (1714_CR24) 2023; 9
R Selvabharathi (1714_CR34) 2023; 37
J Liang (1714_CR10) 2023; 29
1714_CR36
J Alphonsa (1714_CR9) 2015; 100
ZH Zhu (1714_CR33) 2018; 15
J-B Lee (1714_CR7) 2006; 99
M Naseem (1714_CR1) 2022; 257
P Korotaev (1714_CR12) 2023; 82
JL Gao (1714_CR16) 2023; 198
M Adeli (1714_CR25) 2010; 197
H Chen (1714_CR22) 2021; 33
E Ma (1714_CR18) 2023; 117
References_xml – volume: 27
  start-page: 954
  year: 2020
  ident: 1714_CR35
  publication-title: Int. J Min. Met. Mater.
  doi: 10.1007/s12613-020-1984-5
– volume: 4
  year: 2023
  ident: 1714_CR13
  publication-title: Cell Rep. Phys. Sci.
  doi: 10.1016/j.xcrp.2023.101720
– volume: 351
  start-page: 334
  year: 2003
  ident: 1714_CR21
  publication-title: Mater. Sci. Eng. A-Struct. Mater. Proper. Microstruct. Process.
  doi: 10.1016/S0921-5093(02)00841-9
– volume: 457
  year: 2023
  ident: 1714_CR31
  publication-title: SURF COAT TECH.
  doi: 10.1016/j.surfcoat.2023.129295
– volume: 82
  start-page: 102587
  year: 2023
  ident: 1714_CR12
  publication-title: Calphad-Comput. Coupling Ph. Diagrams Thermochem.
  doi: 10.1016/j.calphad.2023.102587
– ident: 1714_CR8
  doi: 10.1016/j.engfailanal.2021.105227
– volume: 446
  year: 2022
  ident: 1714_CR23
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2022.128787
– volume: 37
  start-page: 107285
  year: 2023
  ident: 1714_CR19
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2023.107285
– volume: 99
  start-page: 224
  year: 2006
  ident: 1714_CR7
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2005.10.016
– volume: 26
  start-page: 4168
  year: 2023
  ident: 1714_CR15
  publication-title: J. Mater. Res. Technol-JMRT.
  doi: 10.1016/j.jmrt.2023.08.139
– volume: 28
  start-page: 216
  year: 2021
  ident: 1714_CR26
  publication-title: Met. Mater.-Int.
  doi: 10.1007/s12540-021-01035-1
– volume: 833
  year: 2022
  ident: 1714_CR29
  publication-title: Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process.
  doi: 10.1016/j.msea.2021.142557
– volume: 9
  start-page: 8296
  year: 2020
  ident: 1714_CR32
  publication-title: J Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2020.05.057
– volume: 240
  year: 2021
  ident: 1714_CR3
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109863
– volume: 198
  year: 2023
  ident: 1714_CR16
  publication-title: Mater Charact
  doi: 10.1016/j.matchar.2023.112740
– volume: 29
  start-page: 2052
  year: 2023
  ident: 1714_CR10
  publication-title: Met. Mater.-Int.
  doi: 10.1007/s12540-022-01360-z
– ident: 1714_CR11
  doi: 10.1016/j.actamat.2023.118954
– volume: 100
  start-page: 121
  year: 2015
  ident: 1714_CR9
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2015.07.014
– volume: 9
  start-page: 1009
  year: 2019
  ident: 1714_CR27
  publication-title: Express.
– volume: 209
  year: 2021
  ident: 1714_CR20
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2021.109929
– volume: 33
  start-page: 395
  year: 2021
  ident: 1714_CR22
  publication-title: J. Laser Appl.
– volume: 117
  year: 2023
  ident: 1714_CR18
  publication-title: Int. J. Refract. Met. Hard Mat.
  doi: 10.1016/j.ijrmhm.2023.106420
– volume: 32
  start-page: 10104
  year: 2023
  ident: 1714_CR30
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-023-07851-3
– volume: 15
  start-page: 182
  year: 2018
  ident: 1714_CR33
  publication-title: China Foundry
  doi: 10.1007/s41230-018-7226-z
– volume: 257
  year: 2022
  ident: 1714_CR1
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.111663
– volume: 38
  year: 2024
  ident: 1714_CR17
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2023.107774
– volume: 65
  year: 2024
  ident: 1714_CR14
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2023.103090
– ident: 1714_CR36
  doi: 10.1016/j.matpr.2023.03.418
– volume: 102
  year: 2022
  ident: 1714_CR6
  publication-title: J. Chen. Int. J. Refract. Met. Hard Mat.
  doi: 10.1016/j.ijrmhm.2021.105721
– volume: 134
  start-page: 807
  year: 2019
  ident: 1714_CR4
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.11.066
– volume: 37
  year: 2023
  ident: 1714_CR34
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2023.107560
– volume: 26
  start-page: 849
  year: 2017
  ident: 1714_CR37
  publication-title: Shen. J. Mater. Eng. Perform.
  doi: 10.1007/s11665-016-2470-0
– volume: 197
  start-page: 1404
  year: 2010
  ident: 1714_CR25
  publication-title: Chem. Eng. Commun.
  doi: 10.1080/00986441003626151
– volume: 36
  year: 2020
  ident: 1714_CR28
  publication-title: Addit. Manuf.
– volume: 428
  year: 2023
  ident: 1714_CR2
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2023.118800
– volume: 33
  year: 2022
  ident: 1714_CR5
  publication-title: Mater. Today Commun.
  doi: 10.1016/j.mtcomm.2022.104903
– volume: 9
  year: 2023
  ident: 1714_CR24
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e15144
SSID ssj0061312
Score 2.3767052
Snippet Duplex stainless steels (DSS) had good wear and corrosion resistance, making them potential substitutes instead of martensitic stainless steel as the material...
SourceID nrf
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 3402
SubjectTerms Characterization and Evaluation of Materials
Chemistry and Materials Science
Engineering Thermodynamics
Heat and Mass Transfer
Machines
Magnetic Materials
Magnetism
Manufacturing
Materials Science
Metallic Materials
Processes
Solid Mechanics
재료공학
Title Study on the Composition Design, Microstructure, Wear and Corrosion Resistant of Duplex Stainless Steels Based on Machine Learning
URI https://link.springer.com/article/10.1007/s12540-024-01714-9
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003143311
Volume 30
WOSCitedRecordID wos001247454100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Metals and Materials International, 2024, 30(12), , pp.3402-3417
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2005-4149
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061312
  issn: 1598-9623
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA66etCDb3F9EdCbG9g-0qZHn-hhRXzfQptOlmWXdunuil795U7S1geKoKcWOklLJplv0pl8Q8h-6ice9x3NVBgEzBdBzASPfKY4R_wRLgiV2GIT4eWleHyMrqpDYaM6270OSVpL_XHYzTVBfMQUZqt2s2iazCDcCVOw4frmvra_iE9ljJNHuJQR3aujMj_38QWOprNCf4uIWqA5W_zfJy6RhcqxpIflTFgmU5CtkPlPdIOr5NUkDb7QPKPo9VFjCaqMLXpi8zhatGPS80pK2UkBLfqA64DGWYrCBT4wotcoajzKMc01PZkMB_BMb8z_hQHaTLwDBFt6hNiYmhd1bK4m0IrGtbtG7s5Ob4_PWVWDgSl07MYMhGHcSzXaRQ-48HC346deEKUJohw4XEGiwhD8NngidZNQBw6kbQFJW8exUom3ThpZnsEGoYqrCFTM3SD00VI4QqN2Epwojq_DWMdN4tSqkKoiKDd1Mgbyg1rZjK_E8ZV2fGXUJAfvbYYlPcev0nuoYdlXPWlYtc21m8t-IXHvcIGNAvR-2mGTtGrtympBj37pdPNv4ltkzjUTxGbEbJMGqhR2yKx6GvdGxa6dyW_M5-wk
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB6Vh0Q5QHlULFBqCW6spU1iJ86Rp0BlVxXQws1KnPEKscqi7FK11_5yxt6Eh1ohwSmRMnYiz3i-cWb8GWCnEHkkRWC5SeKYCxVnXMlUcCMl4Y8KUZncHzaR9Hrq-jr9Xm8KGzXV7k1K0nvqp81uoUviE6Zwf2o3T6dgRhBiOcb884ufjf8lfJrkOGVKU5nQvd4q8_8-XsDRVFnZfzKiHmiOF9_3iZ9goQ4s2d7EEpbgA5bLMP-MbnAF_rqiwT9sWDKK-pjzBHXFFjv0dRxt1nXleRNK2fsK2-yK5gHLyoKEK3rgRM9J1EWUYza07PD-boC_2YX7vzAgn0l3SGDL9gkbC_eirq_VRFbTuPZX4cfx0eXBCa_PYOCGArsxR-UY9wpLfjFCqSJa7YgiitMiJ5TDQBrMTZKg6GCkijBPbBxg0VGYd2yWGZNHn2G6HJa4BsxIk6LJZBgngjxFoCxpJydDCYRNMpu1IGhUoU1NUO7OyRjoJ2plN76axlf78dVpC3Yf29xN6Dleld4mDetbc6Mdq7a79of6ttK0djilRjFFP52kBe1Gu7qe0KNXOl1_m_hXmDu57J7ps9Petw34GDpj8dUxmzBN6sUvMGt-jW9G1Za36gfmZe8I
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RghAceJQilqcluLFWN4mdOEdgWVFBVxWFtjcrscdV1VV2lW4RXPnlzDhZWgSqVHFKpIydyDOebxyPvwF45VWdaZUE6Yo8l8rklTS6VNJpTfhjUjSujsUmiunUHB6WuxdO8cds99WWZHemgVmamuXWwoet84NvKW_oE77IWMFblmtwXXEiPa_X9_ZXvpiwqtvv1CVNa0L6_tjMv_v4A5rWmjb8tTsaQWdy9_8_9x7c6QNO8aazkPtwDZsNuH2BhvAB_ORkwh9i3giKBgV7iD6TS4xjfsdQ7HDaXkc1e9biUBzQ_BBV40m4pQcs-plEOdJcinkQ47PFDL-LPf7vMCNfSndIICzeEmZ6ftFOzOFE0dO7Hm3C18n7L-8-yL42g3QU8C0lGmbi84H8ZYbaZLQKUj7LS18T-mGiHdauKFCNMDM-rYuQJ-hHButRqCrn6uwhrDfzBh-BcNqV6Cqd5oUiD5KYQJqqyYASFYoqVANIVmqxricu5_oZM3tOuczja2l8bRxfWw7g9e82i46241Lpl6Rte-KOLbNt8_Vobk9aS2uKbWqUU1Q0KgYwXGna9hP99JJOH19N_AXc3B1P7Kft6ccncCtlW4lJM09hnbSLz-CG-7Y8Pm2fRwP_BeU19-w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Study+on+the+Composition+Design%2C+Microstructure%2C+Wear+and+Corrosion+Resistant+of+Duplex+Stainless+Steels+Based+on+Machine+Learning&rft.jtitle=Metals+and+materials+international&rft.au=Jing+Liang&rft.au=Nanying+Lv&rft.au=Zhina+Xie&rft.au=Xiuyuan+Yin&rft.date=2024-12-01&rft.pub=%EB%8C%80%ED%95%9C%EA%B8%88%EC%86%8D%C2%B7%EC%9E%AC%EB%A3%8C%ED%95%99%ED%9A%8C&rft.issn=1598-9623&rft.eissn=2005-4149&rft.spage=3402&rft.epage=3417&rft_id=info:doi/10.1007%2Fs12540-024-01714-9&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10651207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-9623&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-9623&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-9623&client=summon