Hierarchical Discriminative Feature Learning for Hyperspectral Image Classification

Building effective image representations from hyperspectral data helps to improve the performance for classification. In this letter, we develop a hierarchical discriminative feature learning algorithm for hyperspectral image classification, which is a deformation of the spatial-pyramid-matching mod...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE geoscience and remote sensing letters Ročník 13; číslo 4; s. 594 - 598
Hlavní autoři: Xiangrong Zhang, Yunlong Liang, Yaoguo Zheng, Jinliang An, Jiao, L. C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.04.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1545-598X, 1558-0571
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Building effective image representations from hyperspectral data helps to improve the performance for classification. In this letter, we develop a hierarchical discriminative feature learning algorithm for hyperspectral image classification, which is a deformation of the spatial-pyramid-matching model based on the sparse codes learned from the discriminative dictionary in each layer of a two-layer hierarchical scheme. The pooling features achieved by the proposed method are more robust and discriminative for the classification. We evaluate the proposed method on two hyperspectral data sets: Indiana Pines and Salinas scene. The results show our method possessing state-of-the-art classification accuracy.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1545-598X
1558-0571
DOI:10.1109/LGRS.2016.2528883