Constrained flows in networks

The support of a flow x in a network is the subdigraph induced by the arcs uv for which x(uv)>0. We discuss a number of results on flows in networks where we put certain restrictions on structure of the support of the flow. Many of these problems are NP-hard because they generalize linkage proble...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Theoretical computer science Ročník 1010; s. 114702
Hlavní autori: Bang-Jensen, J., Bessy, S., Picasarri-Arrieta, L.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 27.09.2024
Elsevier
Predmet:
ISSN:0304-3975, 1879-2294
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The support of a flow x in a network is the subdigraph induced by the arcs uv for which x(uv)>0. We discuss a number of results on flows in networks where we put certain restrictions on structure of the support of the flow. Many of these problems are NP-hard because they generalize linkage problems for digraphs. For example deciding whether a network N=(D,s,t,c) has a maximum flow x such that the maximum out-degree of the support Dx of x is at most 2 is NP-complete as it contains the 2-linkage problem as a very special case. Another problem which is NP-complete for the same reason is that of computing the maximum flow we can send from s to t along p paths (called a maximum p-path-flow) in N. Baier et al. (2005) gave a polynomial time algorithm which finds a p-path-flow x whose value is at least 23 of the value of a optimum p-path-flow when p∈{2,3}, and at least 12 when p≥4. When p=2, they show that this is best possible unless P=NP. We show for each p≥2 that the value of a maximum p-path-flow cannot be approximated by any ratio larger than 911, unless P=NP. We also consider a variant of the problem where the p paths must be disjoint. For this problem, we give an algorithm which gets within a factor 1H(p) of the optimum solution, where H(p) is the p'th harmonic number (H(p)∼ln⁡(p)). We show that in the case where the network is acyclic, we can find such a maximum p-path-flow in polynomial time for every p. We determine the complexity of a number of related problems concerning the structure of flows. For the special case of acyclic digraphs, some of the results we obtain are in some sense best possible.
AbstractList The support of a flow x in a network is the subdigraph induced by the arcs uv for which x(uv)>0. We discuss a number of results on flows in networks where we put certain restrictions on structure of the support of the flow. Many of these problems are NP-hard because they generalize linkage problems for digraphs. For example deciding whether a network N=(D,s,t,c) has a maximum flow x such that the maximum out-degree of the support Dx of x is at most 2 is NP-complete as it contains the 2-linkage problem as a very special case. Another problem which is NP-complete for the same reason is that of computing the maximum flow we can send from s to t along p paths (called a maximum p-path-flow) in N. Baier et al. (2005) gave a polynomial time algorithm which finds a p-path-flow x whose value is at least 23 of the value of a optimum p-path-flow when p∈{2,3}, and at least 12 when p≥4. When p=2, they show that this is best possible unless P=NP. We show for each p≥2 that the value of a maximum p-path-flow cannot be approximated by any ratio larger than 911, unless P=NP. We also consider a variant of the problem where the p paths must be disjoint. For this problem, we give an algorithm which gets within a factor 1H(p) of the optimum solution, where H(p) is the p'th harmonic number (H(p)∼ln⁡(p)). We show that in the case where the network is acyclic, we can find such a maximum p-path-flow in polynomial time for every p. We determine the complexity of a number of related problems concerning the structure of flows. For the special case of acyclic digraphs, some of the results we obtain are in some sense best possible.
The support of a flow $x$ in a network is the subdigraph induced by the arcs $ij$ for which $x_{ij}>0$. We discuss a number of results on flows in networks where we put certain restrictions on structure of the support of the flow. Many of these problems are NP-hard because they generalize linkage problems for digraphs. For example deciding whether a network ${\cal N}=(D,s,t,c)$ has a maximum flow $x$ such that the maximum out-degree of the support $D_x$ of $x$ is at most 2 is NP-complete as it contains the 2-linkage problem as a very special case. Another problem which is NP-complete for the same reason is that of deciding the maximum flow we can send from $s$ to $t$ along 2 paths (called a maximum 2-path-flow) in ${\cal N}$. Baier et al. (2005) gave a polynomial algorithm which finds a 2-path-flow $x$ whose value is at least $\frac{2}{3}$ of the value of a optimum 2-path-flow. This is best possible unless P=NP. They also obtained a $\frac{2}{p}$-approximation for the maximum value of a $p$-path-flow for every $p\geq 2$. In this paper we give an algorithm which gets within a factor $\frac{1}{H(p)}$ of the optimum solution, where $H(p)$ is the $p$'th harmonic number ($H(p) \sim \ln(p)$). This improves the approximation bound due to Baier et al. when $p\geq 5$. We show that in the case where the network is acyclic, we can find a maximum $p$-path-flow in polynomial time for every $p$. We determine the complexity of a number of related problems concerning the structure of flows. For the special case of acyclic digraphs, some of the results we obtain are in some sense best possible.
ArticleNumber 114702
Author Picasarri-Arrieta, L.
Bessy, S.
Bang-Jensen, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Bang-Jensen
  fullname: Bang-Jensen, J.
  email: jbj@imada.sdu.dk
  organization: Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
– sequence: 2
  givenname: S.
  surname: Bessy
  fullname: Bessy, S.
  email: stephane.bessy@lirmm.fr
  organization: LIRMM, Univ Montpellier, CNRS, Montpellier, France
– sequence: 3
  givenname: L.
  orcidid: 0000-0003-0414-8136
  surname: Picasarri-Arrieta
  fullname: Picasarri-Arrieta, L.
  email: lucas.picasarri-arrieta@inria.fr
  organization: Université Côte d'Azur, CNRS, Inria, I3S, Sophia-Antipolis, France
BackLink https://inria.hal.science/hal-04379871$$DView record in HAL
BookMark eNp9kE1LxDAQhoOs4O7qD_Ag7NVD6-SjTYunpagrFLzoOaTJFFPXRJKyi__eLhWPzmWG4X0G5lmRhQ8eCbmmkFOg5d2QjyblDJjIKRUS2BlZ0krWGWO1WJAlcBAZr2VxQVYpDTBVIcsluWmCT2PUzqPd9PtwTBvnNx7HY4gf6ZKc93qf8Oq3r8nb48Nrs8val6fnZttmhrNyzJAysCBop7W1yHvsRSeL2jLkJa90pUGC6ISR0ywFN9L2XUfRCtEht0XF1-R2vvuu9-oruk8dv1XQTu22rTrtQHBZV5Ie6JSlc9bEkFLE_g-goE4u1KAmF-rkQs0uJuZ-ZnB64uAwqmQceoPWRTSjssH9Q_8AUH5ncQ
Cites_doi 10.1016/j.tcs.2015.06.026
10.1016/j.dam.2023.11.026
10.1007/s101070100260
10.1016/j.tcs.2014.01.011
10.1016/0304-3975(80)90009-2
10.1137/070697781
10.1016/j.dam.2015.10.012
10.1016/j.tcs.2012.03.003
10.1007/s00453-005-1167-9
10.1016/j.orl.2019.10.012
10.1137/0205048
ContentType Journal Article
Copyright 2024
licence_http://creativecommons.org/publicdomain/zero
Copyright_xml – notice: 2024
– notice: licence_http://creativecommons.org/publicdomain/zero
DBID AAYXX
CITATION
1XC
DOI 10.1016/j.tcs.2024.114702
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
ExternalDocumentID oai:HAL:hal-04379871v1
10_1016_j_tcs_2024_114702
S0304397524003190
GrantInformation_xml – fundername: EUR DS4H Investments
  grantid: ANR-17-EURE-0004
– fundername: Independent Research Fund Denmark
  grantid: DFF 7014-00037B
  funderid: https://doi.org/10.13039/501100004836
– fundername: DIGRAPHS
  grantid: ANR-19-CE48-0013
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
0SF
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABJNI
ABMAC
ABVKL
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSW
T5K
TN5
WH7
YNT
ZMT
~G-
29Q
9DU
AAEDT
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AEXQZ
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FGOYB
G-2
HZ~
R2-
SSZ
TAE
WUQ
ZY4
~HD
1XC
ID FETCH-LOGICAL-c326t-e120d041baadde3fef4b759d2e3638a8a0704b4c78a8743c7dfbb1ed44be3d583
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001262962700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Tue Dec 02 06:20:54 EST 2025
Sat Nov 29 05:49:21 EST 2025
Sat Aug 10 15:31:15 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords (Arc-)disjoint paths with prescribed end vertices
Acyclic digraph
Polynomial time algorithm
Parameterised complexity
Flows
NP-complete problem
Approximation algorithm
Language English
License licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c326t-e120d041baadde3fef4b759d2e3638a8a0704b4c78a8743c7dfbb1ed44be3d583
ORCID 0000-0003-0414-8136
0000-0001-5783-7125
0000-0001-7130-4990
OpenAccessLink https://inria.hal.science/hal-04379871
ParticipantIDs hal_primary_oai_HAL_hal_04379871v1
crossref_primary_10_1016_j_tcs_2024_114702
elsevier_sciencedirect_doi_10_1016_j_tcs_2024_114702
PublicationCentury 2000
PublicationDate 2024-09-27
PublicationDateYYYYMMDD 2024-09-27
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-27
  day: 27
PublicationDecade 2020
PublicationTitle Theoretical computer science
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Even, Itai, Shamir (br0120) 1976; 5
Fortune, Hopcroft, Wyllie (br0130) 1980; 10
Baier, Köhler, Skutella (br0020) 2005; 42
Bang-Jensen, Gutin (br0040) 2009
Bessy, Hörsch, Maia, Rautenbach, Sau (br0090) 2024; 346
Skutella (br0150) 2002; 91
Disser, Matuschke (br0110) 2020; 48
Slivkins (br0160) 2010; 24
Bang-Jensen, Havet, Yeo (br0050) 2016; 209
Fürer, Raghavachari (br0140) 1992
Bang-Jensen, Bessy (br0030) 2014; 526
Bang-Jensen, Yeo (br0060) 2012; 438
Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh (br0100) 2015
Berman, Karpinski, Scott (br0080) 2003; TR03
Ahuja, Magnanti, Orlin (br0010) 1993
Bang-Jensen, Yeo (br0070) 2015; 595
Bang-Jensen (10.1016/j.tcs.2024.114702_br0040) 2009
Bang-Jensen (10.1016/j.tcs.2024.114702_br0060) 2012; 438
Berman (10.1016/j.tcs.2024.114702_br0080) 2003; TR03
Ahuja (10.1016/j.tcs.2024.114702_br0010) 1993
Disser (10.1016/j.tcs.2024.114702_br0110) 2020; 48
Skutella (10.1016/j.tcs.2024.114702_br0150) 2002; 91
Slivkins (10.1016/j.tcs.2024.114702_br0160) 2010; 24
Bang-Jensen (10.1016/j.tcs.2024.114702_br0030) 2014; 526
Bessy (10.1016/j.tcs.2024.114702_br0090) 2024; 346
Bang-Jensen (10.1016/j.tcs.2024.114702_br0070) 2015; 595
Fürer (10.1016/j.tcs.2024.114702_br0140) 1992
Baier (10.1016/j.tcs.2024.114702_br0020) 2005; 42
Bang-Jensen (10.1016/j.tcs.2024.114702_br0050) 2016; 209
Even (10.1016/j.tcs.2024.114702_br0120) 1976; 5
Fortune (10.1016/j.tcs.2024.114702_br0130) 1980; 10
Cygan (10.1016/j.tcs.2024.114702_br0100) 2015
References_xml – volume: 438
  start-page: 48
  year: 2012
  end-page: 54
  ident: br0060
  article-title: Arc-disjoint spanning sub(di)graphs in digraphs
  publication-title: Theor. Comput. Sci.
– volume: 595
  start-page: 107
  year: 2015
  end-page: 119
  ident: br0070
  article-title: Balanced branchings in digraphs
  publication-title: Theor. Comput. Sci.
– volume: 346
  start-page: 80
  year: 2024
  end-page: 94
  ident: br0090
  article-title: FPT algorithms for packing k-safe spanning rooted sub(di)graphs
  publication-title: Discrete Appl. Math.
– year: 2009
  ident: br0040
  article-title: Digraphs: Theory, Algorithms and Applications
– volume: 42
  start-page: 231
  year: 2005
  end-page: 248
  ident: br0020
  article-title: The
  publication-title: Algorithmica
– volume: 91
  start-page: 493
  year: 2002
  end-page: 514
  ident: br0150
  article-title: Approximating the single source unsplittable min-cost flow problem
  publication-title: Math. Program.
– year: 1993
  ident: br0010
  article-title: Network Flows
– volume: 24
  start-page: 146
  year: 2010
  end-page: 157
  ident: br0160
  article-title: Parameterized tractability of edge-disjoint paths on directed acyclic graphs
  publication-title: SIAM J. Discrete Math.
– volume: 526
  start-page: 28
  year: 2014
  end-page: 40
  ident: br0030
  article-title: (Arc-)disjoint flows in networks
  publication-title: Theor. Comput. Sci.
– volume: 5
  start-page: 691
  year: 1976
  end-page: 703
  ident: br0120
  article-title: On the complexity of timetable and multicommodity flow problems
  publication-title: SIAM J. Comput.
– volume: 10
  start-page: 111
  year: 1980
  end-page: 121
  ident: br0130
  article-title: The directed subgraph homeomorphism problem
  publication-title: Theor. Comput. Sci.
– volume: TR03
  year: 2003
  ident: br0080
  article-title: Approximation hardness of short symmetric instances of MAX-3SAT
  publication-title: Electron. Colloq. Comput. Complex.
– year: 2015
  ident: br0100
  article-title: Parameterized Algorithms
– volume: 48
  start-page: 18
  year: 2020
  end-page: 23
  ident: br0110
  article-title: The complexity of computing a robust flow
  publication-title: Oper. Res. Lett.
– start-page: 317
  year: 1992
  end-page: 324
  ident: br0140
  article-title: Approximating the minimum degree spanning tree to within one from the optimal degree
  publication-title: Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms
– volume: 209
  start-page: 16
  year: 2016
  end-page: 26
  ident: br0050
  article-title: The complexity of finding arc-disjoint branching flows
  publication-title: Discrete Appl. Math.
– volume: 595
  start-page: 107
  year: 2015
  ident: 10.1016/j.tcs.2024.114702_br0070
  article-title: Balanced branchings in digraphs
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2015.06.026
– start-page: 317
  year: 1992
  ident: 10.1016/j.tcs.2024.114702_br0140
  article-title: Approximating the minimum degree spanning tree to within one from the optimal degree
– volume: TR03
  year: 2003
  ident: 10.1016/j.tcs.2024.114702_br0080
  article-title: Approximation hardness of short symmetric instances of MAX-3SAT
  publication-title: Electron. Colloq. Comput. Complex.
– volume: 346
  start-page: 80
  year: 2024
  ident: 10.1016/j.tcs.2024.114702_br0090
  article-title: FPT algorithms for packing k-safe spanning rooted sub(di)graphs
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2023.11.026
– volume: 91
  start-page: 493
  issue: 3
  year: 2002
  ident: 10.1016/j.tcs.2024.114702_br0150
  article-title: Approximating the single source unsplittable min-cost flow problem
  publication-title: Math. Program.
  doi: 10.1007/s101070100260
– volume: 526
  start-page: 28
  year: 2014
  ident: 10.1016/j.tcs.2024.114702_br0030
  article-title: (Arc-)disjoint flows in networks
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2014.01.011
– volume: 10
  start-page: 111
  year: 1980
  ident: 10.1016/j.tcs.2024.114702_br0130
  article-title: The directed subgraph homeomorphism problem
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(80)90009-2
– year: 1993
  ident: 10.1016/j.tcs.2024.114702_br0010
– year: 2009
  ident: 10.1016/j.tcs.2024.114702_br0040
– volume: 24
  start-page: 146
  issue: 1
  year: 2010
  ident: 10.1016/j.tcs.2024.114702_br0160
  article-title: Parameterized tractability of edge-disjoint paths on directed acyclic graphs
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/070697781
– year: 2015
  ident: 10.1016/j.tcs.2024.114702_br0100
– volume: 209
  start-page: 16
  year: 2016
  ident: 10.1016/j.tcs.2024.114702_br0050
  article-title: The complexity of finding arc-disjoint branching flows
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2015.10.012
– volume: 438
  start-page: 48
  year: 2012
  ident: 10.1016/j.tcs.2024.114702_br0060
  article-title: Arc-disjoint spanning sub(di)graphs in digraphs
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2012.03.003
– volume: 42
  start-page: 231
  year: 2005
  ident: 10.1016/j.tcs.2024.114702_br0020
  article-title: The k-splittable flow problem
  publication-title: Algorithmica
  doi: 10.1007/s00453-005-1167-9
– volume: 48
  start-page: 18
  issue: 1
  year: 2020
  ident: 10.1016/j.tcs.2024.114702_br0110
  article-title: The complexity of computing a robust flow
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2019.10.012
– volume: 5
  start-page: 691
  issue: 4
  year: 1976
  ident: 10.1016/j.tcs.2024.114702_br0120
  article-title: On the complexity of timetable and multicommodity flow problems
  publication-title: SIAM J. Comput.
  doi: 10.1137/0205048
SSID ssj0000576
Score 2.423813
Snippet The support of a flow x in a network is the subdigraph induced by the arcs uv for which x(uv)>0. We discuss a number of results on flows in networks where we...
The support of a flow $x$ in a network is the subdigraph induced by the arcs $ij$ for which $x_{ij}>0$. We discuss a number of results on flows in networks...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 114702
SubjectTerms (Arc-)disjoint paths with prescribed end vertices
Acyclic digraph
Approximation algorithm
Combinatorics
Flows
Mathematics
NP-complete problem
Parameterised complexity
Polynomial time algorithm
Title Constrained flows in networks
URI https://dx.doi.org/10.1016/j.tcs.2024.114702
https://inria.hal.science/hal-04379871
Volume 1010
WOSCitedRecordID wos001262962700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 20211207
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NS8MwFA86PejBj6k4vyjiSelY21ebHococ0zZYcJupU1S3ZAo65z7831p0m4qEz14CSVtH2l-6XsvL--DkDMQjAvwqc3B5TYIyvGf477NlSwFL0kTPw8U7gT397TfD7umcGKWlxMIpKTTafj6r1BjH4KtQmf_AHdJFDvwGkHHFmHH9lfAqxKceeEHVCXT55f33OFVam_vbF4X7c3FMDJT3OHCSMSZgVM-2m0hjZ2mXS9vIIfUbmJlVxcpZfFoNLCb2Aitlnbq83YFF5QThA7TL-Kp1JlJqOualLyyYZxQNbvDzVSQB0x_58TaKDCsj5lKiu5Cffbs56zXX6RR6SNYuJ8NIyQRKRKRJrFMVtzAD5GFrTRvr_vtmeD1A300bQZeHGLn7nxfxrFIDVl-KgzquYLR2yIbZmdgNTWi22RJyCrZLKpuWIYJV8n6XZlpN9shx3NwWznc1kBaBdy75OHmunfVsk3JC5uhHj22heM2eAOcJFZyx0tFCgl-K3eFh4wypjFyaEiABXiNuh8LeJokjuAAifC4T709UpEvUuwTy6GobDJPcBoy8AVQdWYb8ziGlF_yIK2R82IGoled2SRaOOc1AsUcRWYhapUrQrx_eu0U57Mkr1KZt5qdSPWpnFoh7tYnzsFfBnJI1maL9YhUxqM3cUxW2WQ8yEYnZkV8ACChYZg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+flows+in+networks&rft.jtitle=Theoretical+computer+science&rft.au=Bang-Jensen%2C+J.&rft.au=Bessy%2C+S.&rft.au=Picasarri-Arrieta%2C+L.&rft.date=2024-09-27&rft.issn=0304-3975&rft.volume=1010&rft.spage=114702&rft_id=info:doi/10.1016%2Fj.tcs.2024.114702&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tcs_2024_114702
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon