Constrained flows in networks
The support of a flow x in a network is the subdigraph induced by the arcs uv for which x(uv)>0. We discuss a number of results on flows in networks where we put certain restrictions on structure of the support of the flow. Many of these problems are NP-hard because they generalize linkage proble...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 1010; s. 114702 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
27.09.2024
Elsevier |
| Témata: | |
| ISSN: | 0304-3975, 1879-2294 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The support of a flow x in a network is the subdigraph induced by the arcs uv for which x(uv)>0. We discuss a number of results on flows in networks where we put certain restrictions on structure of the support of the flow. Many of these problems are NP-hard because they generalize linkage problems for digraphs. For example deciding whether a network N=(D,s,t,c) has a maximum flow x such that the maximum out-degree of the support Dx of x is at most 2 is NP-complete as it contains the 2-linkage problem as a very special case.
Another problem which is NP-complete for the same reason is that of computing the maximum flow we can send from s to t along p paths (called a maximum p-path-flow) in N. Baier et al. (2005) gave a polynomial time algorithm which finds a p-path-flow x whose value is at least 23 of the value of a optimum p-path-flow when p∈{2,3}, and at least 12 when p≥4. When p=2, they show that this is best possible unless P=NP. We show for each p≥2 that the value of a maximum p-path-flow cannot be approximated by any ratio larger than 911, unless P=NP. We also consider a variant of the problem where the p paths must be disjoint. For this problem, we give an algorithm which gets within a factor 1H(p) of the optimum solution, where H(p) is the p'th harmonic number (H(p)∼ln(p)). We show that in the case where the network is acyclic, we can find such a maximum p-path-flow in polynomial time for every p.
We determine the complexity of a number of related problems concerning the structure of flows. For the special case of acyclic digraphs, some of the results we obtain are in some sense best possible. |
|---|---|
| AbstractList | The support of a flow x in a network is the subdigraph induced by the arcs uv for which x(uv)>0. We discuss a number of results on flows in networks where we put certain restrictions on structure of the support of the flow. Many of these problems are NP-hard because they generalize linkage problems for digraphs. For example deciding whether a network N=(D,s,t,c) has a maximum flow x such that the maximum out-degree of the support Dx of x is at most 2 is NP-complete as it contains the 2-linkage problem as a very special case.
Another problem which is NP-complete for the same reason is that of computing the maximum flow we can send from s to t along p paths (called a maximum p-path-flow) in N. Baier et al. (2005) gave a polynomial time algorithm which finds a p-path-flow x whose value is at least 23 of the value of a optimum p-path-flow when p∈{2,3}, and at least 12 when p≥4. When p=2, they show that this is best possible unless P=NP. We show for each p≥2 that the value of a maximum p-path-flow cannot be approximated by any ratio larger than 911, unless P=NP. We also consider a variant of the problem where the p paths must be disjoint. For this problem, we give an algorithm which gets within a factor 1H(p) of the optimum solution, where H(p) is the p'th harmonic number (H(p)∼ln(p)). We show that in the case where the network is acyclic, we can find such a maximum p-path-flow in polynomial time for every p.
We determine the complexity of a number of related problems concerning the structure of flows. For the special case of acyclic digraphs, some of the results we obtain are in some sense best possible. The support of a flow $x$ in a network is the subdigraph induced by the arcs $ij$ for which $x_{ij}>0$. We discuss a number of results on flows in networks where we put certain restrictions on structure of the support of the flow. Many of these problems are NP-hard because they generalize linkage problems for digraphs. For example deciding whether a network ${\cal N}=(D,s,t,c)$ has a maximum flow $x$ such that the maximum out-degree of the support $D_x$ of $x$ is at most 2 is NP-complete as it contains the 2-linkage problem as a very special case. Another problem which is NP-complete for the same reason is that of deciding the maximum flow we can send from $s$ to $t$ along 2 paths (called a maximum 2-path-flow) in ${\cal N}$. Baier et al. (2005) gave a polynomial algorithm which finds a 2-path-flow $x$ whose value is at least $\frac{2}{3}$ of the value of a optimum 2-path-flow. This is best possible unless P=NP. They also obtained a $\frac{2}{p}$-approximation for the maximum value of a $p$-path-flow for every $p\geq 2$. In this paper we give an algorithm which gets within a factor $\frac{1}{H(p)}$ of the optimum solution, where $H(p)$ is the $p$'th harmonic number ($H(p) \sim \ln(p)$). This improves the approximation bound due to Baier et al. when $p\geq 5$. We show that in the case where the network is acyclic, we can find a maximum $p$-path-flow in polynomial time for every $p$. We determine the complexity of a number of related problems concerning the structure of flows. For the special case of acyclic digraphs, some of the results we obtain are in some sense best possible. |
| ArticleNumber | 114702 |
| Author | Picasarri-Arrieta, L. Bessy, S. Bang-Jensen, J. |
| Author_xml | – sequence: 1 givenname: J. surname: Bang-Jensen fullname: Bang-Jensen, J. email: jbj@imada.sdu.dk organization: Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark – sequence: 2 givenname: S. surname: Bessy fullname: Bessy, S. email: stephane.bessy@lirmm.fr organization: LIRMM, Univ Montpellier, CNRS, Montpellier, France – sequence: 3 givenname: L. orcidid: 0000-0003-0414-8136 surname: Picasarri-Arrieta fullname: Picasarri-Arrieta, L. email: lucas.picasarri-arrieta@inria.fr organization: Université Côte d'Azur, CNRS, Inria, I3S, Sophia-Antipolis, France |
| BackLink | https://inria.hal.science/hal-04379871$$DView record in HAL |
| BookMark | eNp9kE1LxDAQhoOs4O7qD_Ag7NVD6-SjTYunpagrFLzoOaTJFFPXRJKyi__eLhWPzmWG4X0G5lmRhQ8eCbmmkFOg5d2QjyblDJjIKRUS2BlZ0krWGWO1WJAlcBAZr2VxQVYpDTBVIcsluWmCT2PUzqPd9PtwTBvnNx7HY4gf6ZKc93qf8Oq3r8nb48Nrs8val6fnZttmhrNyzJAysCBop7W1yHvsRSeL2jLkJa90pUGC6ISR0ywFN9L2XUfRCtEht0XF1-R2vvuu9-oruk8dv1XQTu22rTrtQHBZV5Ie6JSlc9bEkFLE_g-goE4u1KAmF-rkQs0uJuZ-ZnB64uAwqmQceoPWRTSjssH9Q_8AUH5ncQ |
| Cites_doi | 10.1016/j.tcs.2015.06.026 10.1016/j.dam.2023.11.026 10.1007/s101070100260 10.1016/j.tcs.2014.01.011 10.1016/0304-3975(80)90009-2 10.1137/070697781 10.1016/j.dam.2015.10.012 10.1016/j.tcs.2012.03.003 10.1007/s00453-005-1167-9 10.1016/j.orl.2019.10.012 10.1137/0205048 |
| ContentType | Journal Article |
| Copyright | 2024 licence_http://creativecommons.org/publicdomain/zero |
| Copyright_xml | – notice: 2024 – notice: licence_http://creativecommons.org/publicdomain/zero |
| DBID | AAYXX CITATION 1XC |
| DOI | 10.1016/j.tcs.2024.114702 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1879-2294 |
| ExternalDocumentID | oai:HAL:hal-04379871v1 10_1016_j_tcs_2024_114702 S0304397524003190 |
| GrantInformation_xml | – fundername: EUR DS4H Investments grantid: ANR-17-EURE-0004 – fundername: Independent Research Fund Denmark grantid: DFF 7014-00037B funderid: https://doi.org/10.13039/501100004836 – fundername: DIGRAPHS grantid: ANR-19-CE48-0013 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 0SF 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABJNI ABMAC ABVKL ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SES SEW SPC SPCBC SSV SSW T5K TN5 WH7 YNT ZMT ~G- 29Q 9DU AAEDT AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AEXQZ AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FGOYB G-2 HZ~ R2- SSZ TAE WUQ ZY4 ~HD 1XC |
| ID | FETCH-LOGICAL-c326t-e120d041baadde3fef4b759d2e3638a8a0704b4c78a8743c7dfbb1ed44be3d583 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001262962700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0304-3975 |
| IngestDate | Tue Dec 02 06:20:54 EST 2025 Sat Nov 29 05:49:21 EST 2025 Sat Aug 10 15:31:15 EDT 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | (Arc-)disjoint paths with prescribed end vertices Acyclic digraph Polynomial time algorithm Parameterised complexity Flows NP-complete problem Approximation algorithm |
| Language | English |
| License | licence_http://creativecommons.org/publicdomain/zero/: http://creativecommons.org/publicdomain/zero |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c326t-e120d041baadde3fef4b759d2e3638a8a0704b4c78a8743c7dfbb1ed44be3d583 |
| ORCID | 0000-0003-0414-8136 0000-0001-5783-7125 0000-0001-7130-4990 |
| OpenAccessLink | https://inria.hal.science/hal-04379871 |
| ParticipantIDs | hal_primary_oai_HAL_hal_04379871v1 crossref_primary_10_1016_j_tcs_2024_114702 elsevier_sciencedirect_doi_10_1016_j_tcs_2024_114702 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-27 |
| PublicationDateYYYYMMDD | 2024-09-27 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-27 day: 27 |
| PublicationDecade | 2020 |
| PublicationTitle | Theoretical computer science |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Even, Itai, Shamir (br0120) 1976; 5 Fortune, Hopcroft, Wyllie (br0130) 1980; 10 Baier, Köhler, Skutella (br0020) 2005; 42 Bang-Jensen, Gutin (br0040) 2009 Bessy, Hörsch, Maia, Rautenbach, Sau (br0090) 2024; 346 Skutella (br0150) 2002; 91 Disser, Matuschke (br0110) 2020; 48 Slivkins (br0160) 2010; 24 Bang-Jensen, Havet, Yeo (br0050) 2016; 209 Fürer, Raghavachari (br0140) 1992 Bang-Jensen, Bessy (br0030) 2014; 526 Bang-Jensen, Yeo (br0060) 2012; 438 Cygan, Fomin, Kowalik, Lokshtanov, Marx, Pilipczuk, Pilipczuk, Saurabh (br0100) 2015 Berman, Karpinski, Scott (br0080) 2003; TR03 Ahuja, Magnanti, Orlin (br0010) 1993 Bang-Jensen, Yeo (br0070) 2015; 595 Bang-Jensen (10.1016/j.tcs.2024.114702_br0040) 2009 Bang-Jensen (10.1016/j.tcs.2024.114702_br0060) 2012; 438 Berman (10.1016/j.tcs.2024.114702_br0080) 2003; TR03 Ahuja (10.1016/j.tcs.2024.114702_br0010) 1993 Disser (10.1016/j.tcs.2024.114702_br0110) 2020; 48 Skutella (10.1016/j.tcs.2024.114702_br0150) 2002; 91 Slivkins (10.1016/j.tcs.2024.114702_br0160) 2010; 24 Bang-Jensen (10.1016/j.tcs.2024.114702_br0030) 2014; 526 Bessy (10.1016/j.tcs.2024.114702_br0090) 2024; 346 Bang-Jensen (10.1016/j.tcs.2024.114702_br0070) 2015; 595 Fürer (10.1016/j.tcs.2024.114702_br0140) 1992 Baier (10.1016/j.tcs.2024.114702_br0020) 2005; 42 Bang-Jensen (10.1016/j.tcs.2024.114702_br0050) 2016; 209 Even (10.1016/j.tcs.2024.114702_br0120) 1976; 5 Fortune (10.1016/j.tcs.2024.114702_br0130) 1980; 10 Cygan (10.1016/j.tcs.2024.114702_br0100) 2015 |
| References_xml | – volume: 438 start-page: 48 year: 2012 end-page: 54 ident: br0060 article-title: Arc-disjoint spanning sub(di)graphs in digraphs publication-title: Theor. Comput. Sci. – volume: 595 start-page: 107 year: 2015 end-page: 119 ident: br0070 article-title: Balanced branchings in digraphs publication-title: Theor. Comput. Sci. – volume: 346 start-page: 80 year: 2024 end-page: 94 ident: br0090 article-title: FPT algorithms for packing k-safe spanning rooted sub(di)graphs publication-title: Discrete Appl. Math. – year: 2009 ident: br0040 article-title: Digraphs: Theory, Algorithms and Applications – volume: 42 start-page: 231 year: 2005 end-page: 248 ident: br0020 article-title: The publication-title: Algorithmica – volume: 91 start-page: 493 year: 2002 end-page: 514 ident: br0150 article-title: Approximating the single source unsplittable min-cost flow problem publication-title: Math. Program. – year: 1993 ident: br0010 article-title: Network Flows – volume: 24 start-page: 146 year: 2010 end-page: 157 ident: br0160 article-title: Parameterized tractability of edge-disjoint paths on directed acyclic graphs publication-title: SIAM J. Discrete Math. – volume: 526 start-page: 28 year: 2014 end-page: 40 ident: br0030 article-title: (Arc-)disjoint flows in networks publication-title: Theor. Comput. Sci. – volume: 5 start-page: 691 year: 1976 end-page: 703 ident: br0120 article-title: On the complexity of timetable and multicommodity flow problems publication-title: SIAM J. Comput. – volume: 10 start-page: 111 year: 1980 end-page: 121 ident: br0130 article-title: The directed subgraph homeomorphism problem publication-title: Theor. Comput. Sci. – volume: TR03 year: 2003 ident: br0080 article-title: Approximation hardness of short symmetric instances of MAX-3SAT publication-title: Electron. Colloq. Comput. Complex. – year: 2015 ident: br0100 article-title: Parameterized Algorithms – volume: 48 start-page: 18 year: 2020 end-page: 23 ident: br0110 article-title: The complexity of computing a robust flow publication-title: Oper. Res. Lett. – start-page: 317 year: 1992 end-page: 324 ident: br0140 article-title: Approximating the minimum degree spanning tree to within one from the optimal degree publication-title: Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms – volume: 209 start-page: 16 year: 2016 end-page: 26 ident: br0050 article-title: The complexity of finding arc-disjoint branching flows publication-title: Discrete Appl. Math. – volume: 595 start-page: 107 year: 2015 ident: 10.1016/j.tcs.2024.114702_br0070 article-title: Balanced branchings in digraphs publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2015.06.026 – start-page: 317 year: 1992 ident: 10.1016/j.tcs.2024.114702_br0140 article-title: Approximating the minimum degree spanning tree to within one from the optimal degree – volume: TR03 year: 2003 ident: 10.1016/j.tcs.2024.114702_br0080 article-title: Approximation hardness of short symmetric instances of MAX-3SAT publication-title: Electron. Colloq. Comput. Complex. – volume: 346 start-page: 80 year: 2024 ident: 10.1016/j.tcs.2024.114702_br0090 article-title: FPT algorithms for packing k-safe spanning rooted sub(di)graphs publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2023.11.026 – volume: 91 start-page: 493 issue: 3 year: 2002 ident: 10.1016/j.tcs.2024.114702_br0150 article-title: Approximating the single source unsplittable min-cost flow problem publication-title: Math. Program. doi: 10.1007/s101070100260 – volume: 526 start-page: 28 year: 2014 ident: 10.1016/j.tcs.2024.114702_br0030 article-title: (Arc-)disjoint flows in networks publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2014.01.011 – volume: 10 start-page: 111 year: 1980 ident: 10.1016/j.tcs.2024.114702_br0130 article-title: The directed subgraph homeomorphism problem publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(80)90009-2 – year: 1993 ident: 10.1016/j.tcs.2024.114702_br0010 – year: 2009 ident: 10.1016/j.tcs.2024.114702_br0040 – volume: 24 start-page: 146 issue: 1 year: 2010 ident: 10.1016/j.tcs.2024.114702_br0160 article-title: Parameterized tractability of edge-disjoint paths on directed acyclic graphs publication-title: SIAM J. Discrete Math. doi: 10.1137/070697781 – year: 2015 ident: 10.1016/j.tcs.2024.114702_br0100 – volume: 209 start-page: 16 year: 2016 ident: 10.1016/j.tcs.2024.114702_br0050 article-title: The complexity of finding arc-disjoint branching flows publication-title: Discrete Appl. Math. doi: 10.1016/j.dam.2015.10.012 – volume: 438 start-page: 48 year: 2012 ident: 10.1016/j.tcs.2024.114702_br0060 article-title: Arc-disjoint spanning sub(di)graphs in digraphs publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2012.03.003 – volume: 42 start-page: 231 year: 2005 ident: 10.1016/j.tcs.2024.114702_br0020 article-title: The k-splittable flow problem publication-title: Algorithmica doi: 10.1007/s00453-005-1167-9 – volume: 48 start-page: 18 issue: 1 year: 2020 ident: 10.1016/j.tcs.2024.114702_br0110 article-title: The complexity of computing a robust flow publication-title: Oper. Res. Lett. doi: 10.1016/j.orl.2019.10.012 – volume: 5 start-page: 691 issue: 4 year: 1976 ident: 10.1016/j.tcs.2024.114702_br0120 article-title: On the complexity of timetable and multicommodity flow problems publication-title: SIAM J. Comput. doi: 10.1137/0205048 |
| SSID | ssj0000576 |
| Score | 2.423813 |
| Snippet | The support of a flow x in a network is the subdigraph induced by the arcs uv for which x(uv)>0. We discuss a number of results on flows in networks where we... The support of a flow $x$ in a network is the subdigraph induced by the arcs $ij$ for which $x_{ij}>0$. We discuss a number of results on flows in networks... |
| SourceID | hal crossref elsevier |
| SourceType | Open Access Repository Index Database Publisher |
| StartPage | 114702 |
| SubjectTerms | (Arc-)disjoint paths with prescribed end vertices Acyclic digraph Approximation algorithm Combinatorics Flows Mathematics NP-complete problem Parameterised complexity Polynomial time algorithm |
| Title | Constrained flows in networks |
| URI | https://dx.doi.org/10.1016/j.tcs.2024.114702 https://inria.hal.science/hal-04379871 |
| Volume | 1010 |
| WOSCitedRecordID | wos001262962700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2294 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000576 issn: 0304-3975 databaseCode: AIEXJ dateStart: 20211207 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bS8MwFA66-aAP3sU7RXxSOto0XdrHIRMdUwSn7K0kTaoTibLOy8_3pEm74VBU8CWUjCbb-bIvJyfngtChIAKnPgtcihkcUHgYusxrMjeOcdb0OeZZkVLotksvL6N-P76yFQXzopwAVSp6f4-f_xVq6AOwdejsL-CuBoUOeAbQoQXYof0R8LoEZ1H4AVTJ7PHprXB4VcbbO5_URXsTMYypLe5wbHfEsYFT3bkdqaydptOoPgCGNG5iVdcVjJSz4XDgtqCRRi3tNibtCphoJwgTpm-MXVMBLybISl-kxKbYSUMazowovIlNreKKVD3jrTrF0MZY8NAYpTpZOiY6WTH18Hg7qpwEr_Vkei7t5gpM4c2iOqZhDNxVb523-53xjhtScydtv1x5e1348X2a6Cv9Y_a-tKQXmkVvGS3aI4HTMlCuoBmpVtFSWW7Dsey7ihYuqhS7-Rram8DZKXB2BsopcV5HN6ft3smZa2tduCko0CNX-tgTHvE50xtOkMmMcPitAssAGJJFDKiZcJJSeAalL6Ui49yXghAuAxFGwQaqqSclN5HDRYThr5kBVaegooSRx4KsGXixxKEIZbSFjkoJJM8mpUlS-vo9JCCuRIsrMeLaQqSUUWJXoNG1EgD0u9cOQJ7V8DqH-Vmrm-g-nUwrhmP6q7_9t7F30Px4ve6i2mj4IvfQXPo6GuTDfbs2PgDDg2H2 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+flows+in+networks&rft.jtitle=Theoretical+computer+science&rft.au=Bang-Jensen%2C+J.&rft.au=Bessy%2C+S.&rft.au=Picasarri-Arrieta%2C+L.&rft.date=2024-09-27&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.eissn=1879-2294&rft.volume=1010&rft_id=info:doi/10.1016%2Fj.tcs.2024.114702&rft.externalDocID=S0304397524003190 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon |