AI-based modeling and data-driven evaluation for smart manufacturing processes
Smart manufacturing refers to optimization techniques that are implemented in production operations by utilizing advanced analytics approaches. With the widespread increase in deploying industrial internet of things ( IIOT ) sensors in manufacturing processes, there is a progress...
Uloženo v:
| Vydáno v: | IEEE/CAA journal of automatica sinica Ročník 7; číslo 4; s. 1026 - 1037 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
Chinese Association of Automation (CAA)
01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2329-9266, 2329-9274 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Smart manufacturing refers to optimization techniques that are implemented in production operations by utilizing advanced analytics approaches. With the widespread increase in deploying industrial internet of things ( IIOT ) sensors in manufacturing processes, there is a progressive need for optimal and effective approaches to data management. Embracing machine learning and artificial intelligence to take advantage of manufacturing data can lead to efficient and intelligent automation. In this paper, we conduct a comprehensive analysis based on evolutionary computing and neural network algorithms toward making semiconductor manufacturing smart. We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes and to address various challenges. We elaborate on the utilization of a genetic algorithm and neural network to propose an intelligent feature selection algorithm. Our objective is to provide an advanced solution for controlling manufacturing processes and to gain perspective on various dimensions that enable manufacturers to access effective predictive technologies. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2329-9266 2329-9274 |
| DOI: | 10.1109/JAS.2020.1003114 |