AI-based modeling and data-driven evaluation for smart manufacturing processes

Smart manufacturing refers to optimization techniques that are implemented in production operations by utilizing advanced analytics approaches. With the widespread increase in deploying industrial internet of things &#x0028 IIOT &#x0029 sensors in manufacturing processes, there is a progress...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/CAA journal of automatica sinica Jg. 7; H. 4; S. 1026 - 1037
Hauptverfasser: Ghahramani, Mohammadhossein, Qiao, Yan, Zhou, Meng Chu, O'Hagan, Adrian, Sweeney, James
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway Chinese Association of Automation (CAA) 01.07.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2329-9266, 2329-9274
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Smart manufacturing refers to optimization techniques that are implemented in production operations by utilizing advanced analytics approaches. With the widespread increase in deploying industrial internet of things &#x0028 IIOT &#x0029 sensors in manufacturing processes, there is a progressive need for optimal and effective approaches to data management. Embracing machine learning and artificial intelligence to take advantage of manufacturing data can lead to efficient and intelligent automation. In this paper, we conduct a comprehensive analysis based on evolutionary computing and neural network algorithms toward making semiconductor manufacturing smart. We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes and to address various challenges. We elaborate on the utilization of a genetic algorithm and neural network to propose an intelligent feature selection algorithm. Our objective is to provide an advanced solution for controlling manufacturing processes and to gain perspective on various dimensions that enable manufacturers to access effective predictive technologies.
AbstractList Smart manufacturing refers to optimization techniques that are implemented in production operations by utilizing advanced analytics approaches. With the widespread increase in deploying industrial internet of things ( IIOT ) sensors in manufacturing processes, there is a progressive need for optimal and effective approaches to data management. Embracing machine learning and artificial intelligence to take advantage of manufacturing data can lead to efficient and intelligent automation. In this paper, we conduct a comprehensive analysis based on evolutionary computing and neural network algorithms toward making semiconductor manufacturing smart. We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes and to address various challenges. We elaborate on the utilization of a genetic algorithm and neural network to propose an intelligent feature selection algorithm. Our objective is to provide an advanced solution for controlling manufacturing processes and to gain perspective on various dimensions that enable manufacturers to access effective predictive technologies.
Smart manufacturing refers to optimization techniques that are implemented in production operations by utilizing advanced analytics approaches. With the widespread increase in deploying industrial internet of things &#x0028 IIOT &#x0029 sensors in manufacturing processes, there is a progressive need for optimal and effective approaches to data management. Embracing machine learning and artificial intelligence to take advantage of manufacturing data can lead to efficient and intelligent automation. In this paper, we conduct a comprehensive analysis based on evolutionary computing and neural network algorithms toward making semiconductor manufacturing smart. We propose a dynamic algorithm for gaining useful insights about semiconductor manufacturing processes and to address various challenges. We elaborate on the utilization of a genetic algorithm and neural network to propose an intelligent feature selection algorithm. Our objective is to provide an advanced solution for controlling manufacturing processes and to gain perspective on various dimensions that enable manufacturers to access effective predictive technologies.
Author Ghahramani, Mohammadhossein
Qiao, Yan
Sweeney, James
O'Hagan, Adrian
Zhou, Meng Chu
Author_xml – sequence: 1
  givenname: Mohammadhossein
  surname: Ghahramani
  fullname: Ghahramani, Mohammadhossein
  organization: University College Dublin, Belfield, Dublin 4, Ireland
– sequence: 2
  givenname: Yan
  surname: Qiao
  fullname: Qiao, Yan
  organization: Institute of Systems Engineering, Macau University of Science and Technology, Macau, China
– sequence: 3
  givenname: Meng Chu
  surname: Zhou
  fullname: Zhou, Meng Chu
  organization: Helen and John C. Hartmann Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
– sequence: 4
  givenname: Adrian
  surname: O'Hagan
  fullname: O'Hagan, Adrian
  organization: University College Dublin, Belfield, Dublin 4, Ireland
– sequence: 5
  givenname: James
  surname: Sweeney
  fullname: Sweeney, James
  organization: Royal College of Surgeons in Ireland, Dublin 8, Ireland
BookMark eNp9kL1PwzAQxS1UJErpjsQSiTnlHDtObqwqPooqGIA5cvyBUqVJsZ1K_Pe4tOrAwHR30vvd3XuXZNT1nSHkmsKMUsC75_nbLIMsTgCMUn5GxhnLMMWs4KNTL8QFmXq_BgCa5YVAPiYv82VaS290sum1aZvuM5GdTrQMMtWu2ZkuMTvZDjI0fZfY3iV-I11INrIbrFRhcHtk63plvDf-ipxb2XozPdYJ-Xi4f188pavXx-VivkoVy0RIa55btKrQRRHfZwokoqhLjSoXuRRQl4W0tS6tZVQpUDZXwMBQAQUiGsom5PawN17-GowP1bofXBdPVhmnyDEvEaNKHFTK9d47YyvVhF8nwcmmrShU-_iqGF-1j686xhdB-ANuXRN9f_-H3ByQxhhzkiNw5DllPypDfDs
CODEN IJASJC
CitedBy_id crossref_primary_10_1080_0951192X_2022_2145019
crossref_primary_10_3390_ani13050804
crossref_primary_10_3390_app12136390
crossref_primary_10_1080_0951192X_2022_2027021
crossref_primary_10_1088_1361_6528_add304
crossref_primary_10_1007_s11042_025_20656_x
crossref_primary_10_1016_j_engappai_2024_109910
crossref_primary_10_1109_ACCESS_2020_3042598
crossref_primary_10_1016_j_aei_2025_103179
crossref_primary_10_1016_j_eti_2021_101398
crossref_primary_10_1016_j_neucom_2020_12_103
crossref_primary_10_1016_j_cie_2024_110272
crossref_primary_10_1016_j_aei_2024_102358
crossref_primary_10_1109_ACCESS_2020_3026541
crossref_primary_10_1109_TII_2021_3065377
crossref_primary_10_1080_00207543_2021_1919333
crossref_primary_10_1109_JAS_2021_1003871
crossref_primary_10_1109_TCYB_2021_3059939
crossref_primary_10_1109_JSEN_2021_3059731
crossref_primary_10_1002_eng2_70257
crossref_primary_10_1016_j_jenvman_2023_119968
crossref_primary_10_1109_LRA_2025_3544506
crossref_primary_10_1016_j_heliyon_2024_e37951
crossref_primary_10_1109_EMR_2024_3355973
crossref_primary_10_3390_electronics9122182
crossref_primary_10_1007_s00170_022_09148_6
crossref_primary_10_1007_s10489_024_05633_5
crossref_primary_10_1109_TMECH_2020_3049046
crossref_primary_10_1016_j_jspi_2025_106277
crossref_primary_10_1109_ACCESS_2023_3246029
crossref_primary_10_1016_j_amf_2025_200198
crossref_primary_10_1109_TNNLS_2021_3119889
crossref_primary_10_1080_21681015_2022_2031323
crossref_primary_10_1109_TSMC_2023_3312282
crossref_primary_10_1109_TETC_2025_3546244
crossref_primary_10_1109_JIOT_2021_3132126
crossref_primary_10_1109_TSMC_2020_3035446
crossref_primary_10_1109_TASE_2020_3048056
crossref_primary_10_1109_TASE_2022_3178126
crossref_primary_10_1016_j_compind_2025_104361
crossref_primary_10_1155_2022_4581734
crossref_primary_10_3390_pr9020351
crossref_primary_10_1016_j_mtcomm_2023_107357
crossref_primary_10_1109_TASE_2024_3360476
crossref_primary_10_1016_j_scs_2021_102848
crossref_primary_10_1109_JAS_2022_105752
crossref_primary_10_1109_JAS_2023_123501
crossref_primary_10_1109_JAS_2021_1003925
crossref_primary_10_1109_JAS_2022_105599
crossref_primary_10_3390_data5030080
crossref_primary_10_1016_j_gerr_2025_100144
crossref_primary_10_1109_TCYB_2022_3163577
crossref_primary_10_1016_j_ins_2022_03_063
crossref_primary_10_1080_02786826_2023_2218437
crossref_primary_10_1016_j_compind_2024_104131
crossref_primary_10_1016_j_eng_2025_08_005
crossref_primary_10_1080_21693277_2024_2326526
crossref_primary_10_1007_s10845_023_02266_2
crossref_primary_10_1016_j_heliyon_2023_e23885
crossref_primary_10_1109_TSMC_2021_3072357
crossref_primary_10_1007_s11831_024_10207_2
crossref_primary_10_1080_0305215X_2021_2014477
crossref_primary_10_3390_a18050270
crossref_primary_10_1109_TSM_2021_3068974
crossref_primary_10_2139_ssrn_5112138
crossref_primary_10_3390_a17060265
crossref_primary_10_3390_met15080873
crossref_primary_10_1186_s10033_025_01274_y
crossref_primary_10_1109_TII_2021_3075708
crossref_primary_10_1109_JAS_2020_1003515
crossref_primary_10_1109_JAS_2020_1003518
crossref_primary_10_1080_00405000_2025_2517394
crossref_primary_10_1007_s42979_024_03535_4
crossref_primary_10_1109_JAS_2022_105620
crossref_primary_10_3390_machines10100923
crossref_primary_10_1109_JAS_2022_105743
crossref_primary_10_1109_TASE_2023_3244184
crossref_primary_10_1016_j_mfglet_2025_06_148
crossref_primary_10_1016_j_conengprac_2024_106097
crossref_primary_10_1016_j_compeleceng_2021_107567
crossref_primary_10_3390_pr9122247
crossref_primary_10_1109_ACCESS_2021_3096279
crossref_primary_10_1016_j_eswa_2022_117945
crossref_primary_10_1016_j_jmatprotec_2022_117530
crossref_primary_10_1109_TSC_2021_3084928
crossref_primary_10_2139_ssrn_5275571
crossref_primary_10_1109_TNNLS_2020_3015869
crossref_primary_10_1109_TII_2021_3120027
crossref_primary_10_1109_JRFID_2024_3382252
crossref_primary_10_1080_00207543_2022_2027040
crossref_primary_10_1109_ACCESS_2022_3223053
crossref_primary_10_1016_j_cie_2024_110597
crossref_primary_10_1109_TII_2022_3210250
crossref_primary_10_3390_app12020553
crossref_primary_10_1080_17480272_2024_2448020
crossref_primary_10_1109_TMECH_2020_2996911
crossref_primary_10_3390_s23208480
crossref_primary_10_1007_s12008_022_01075_w
crossref_primary_10_3390_app13010602
crossref_primary_10_1109_TASE_2020_3040400
crossref_primary_10_1016_j_jer_2023_09_027
crossref_primary_10_1109_JAS_2022_106094
crossref_primary_10_3390_a17070319
crossref_primary_10_1109_ACCESS_2022_3173157
crossref_primary_10_1109_TSM_2023_3262957
crossref_primary_10_1088_2515_7655_ac8e30
crossref_primary_10_1109_JAS_2022_106097
crossref_primary_10_3390_e23121645
crossref_primary_10_1109_TIP_2021_3089905
crossref_primary_10_1177_03611981241257512
crossref_primary_10_1145_3614424
crossref_primary_10_1109_TCYB_2021_3079346
crossref_primary_10_3390_mi15040457
crossref_primary_10_1109_JSEN_2021_3090990
crossref_primary_10_1109_TSMC_2023_3280207
crossref_primary_10_1016_j_procs_2025_01_242
crossref_primary_10_1016_j_fluid_2025_114535
crossref_primary_10_1016_j_cej_2021_130011
crossref_primary_10_1109_TSMC_2021_3074069
crossref_primary_10_1109_TNNLS_2023_3249767
crossref_primary_10_1108_IMDS_05_2021_0323
crossref_primary_10_1109_COMST_2023_3246993
crossref_primary_10_1109_TSMC_2022_3228817
crossref_primary_10_1016_j_eneco_2024_107654
crossref_primary_10_1109_TSMC_2022_3227209
crossref_primary_10_1016_j_neucom_2022_04_041
crossref_primary_10_1016_j_procs_2024_06_072
crossref_primary_10_1016_j_jksuci_2022_08_033
crossref_primary_10_1007_s00521_024_09723_w
crossref_primary_10_1109_TSMC_2023_3257172
crossref_primary_10_1007_s40684_024_00644_6
crossref_primary_10_3233_IDT_240705
crossref_primary_10_1080_21693277_2021_1978898
crossref_primary_10_1016_j_swevo_2022_101142
crossref_primary_10_1007_s00170_021_08332_4
crossref_primary_10_1007_s00500_022_06782_w
crossref_primary_10_1080_09537287_2024_2302482
crossref_primary_10_1016_j_cie_2024_110656
crossref_primary_10_1016_j_dwt_2025_101432
crossref_primary_10_1145_3721437
crossref_primary_10_1016_j_jii_2022_100390
crossref_primary_10_1109_MRA_2023_3266618
crossref_primary_10_1109_TII_2023_3272696
crossref_primary_10_1016_j_cep_2025_110388
crossref_primary_10_1109_TASE_2020_3006435
crossref_primary_10_1007_s11227_022_04730_x
crossref_primary_10_1007_s10772_022_09958_9
crossref_primary_10_36096_ijbes_v6i1_468
crossref_primary_10_1109_TII_2022_3209200
crossref_primary_10_1109_TSMC_2020_3010052
crossref_primary_10_1142_S0218126625502433
crossref_primary_10_1016_j_jmsy_2025_01_014
crossref_primary_10_1109_TEVC_2021_3113923
crossref_primary_10_1016_j_jik_2025_100665
crossref_primary_10_3390_math12162479
crossref_primary_10_3390_jtaer20010052
crossref_primary_10_1016_j_engappai_2021_104298
crossref_primary_10_1109_LRA_2022_3181741
crossref_primary_10_1016_j_jmsy_2024_04_012
crossref_primary_10_1016_j_rcim_2022_102513
crossref_primary_10_3390_s22218194
crossref_primary_10_3390_biology12101298
crossref_primary_10_1007_s00170_025_15407_z
crossref_primary_10_1109_JAS_2022_106100
crossref_primary_10_1109_TASE_2022_3192914
crossref_primary_10_3390_s23249731
crossref_primary_10_1093_jcde_qwae027
crossref_primary_10_1109_JIOT_2023_3300921
crossref_primary_10_1016_j_neucom_2020_11_011
crossref_primary_10_1109_TSC_2021_3069108
crossref_primary_10_1109_TSM_2020_3020985
crossref_primary_10_1109_JAS_2022_106106
crossref_primary_10_1109_TNNLS_2020_3036192
crossref_primary_10_1109_JAS_2023_123489
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/JAS.2020.1003114
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2329-9274
EndPage 1037
ExternalDocumentID 10_1109_JAS_2020_1003114
9049451
Genre orig-research
GroupedDBID -0I
-0Y
-SI
-S~
0R~
4.4
5VR
6IK
92M
97E
9D9
9DI
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AFUIB
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
Q--
RIA
RIE
RT9
T8Y
TCJ
TGT
U1F
U1G
U5I
U5S
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c326t-b45f9fc7d771093c0a996b8d9c565a60b87afbd8ff31cc0cf5c030e1607999e13
IEDL.DBID RIE
ISICitedReferencesCount 208
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000545416200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2329-9266
IngestDate Tue Sep 23 17:40:56 EDT 2025
Tue Nov 18 22:26:20 EST 2025
Sat Nov 29 03:31:04 EST 2025
Wed Aug 27 02:17:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-b45f9fc7d771093c0a996b8d9c565a60b87afbd8ff31cc0cf5c030e1607999e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2419495899
PQPubID 2040495
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_JAS_2020_1003114
crossref_primary_10_1109_JAS_2020_1003114
proquest_journals_2419495899
ieee_primary_9049451
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE/CAA journal of automatica sinica
PublicationTitleAbbrev JAS
PublicationYear 2020
Publisher Chinese Association of Automation (CAA)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: Chinese Association of Automation (CAA)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
SSID ssj0001257694
Score 2.5854216
Snippet Smart manufacturing refers to optimization techniques that are implemented in production operations by utilizing advanced analytics approaches. With the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1026
SubjectTerms Algorithms
Artificial intelligence
Classification algorithms
Data management
Evolutionary algorithms
Feature extraction
Genetic algorithms
Industrial applications
Industrial Internet of Things
Machine learning
Manufacturing
Manufacturing processes
Neural networks
Optimization
Optimization techniques
Smart manufacturing
Title AI-based modeling and data-driven evaluation for smart manufacturing processes
URI https://ieeexplore.ieee.org/document/9049451
https://www.proquest.com/docview/2419495899
Volume 7
WOSCitedRecordID wos000545416200010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2329-9274
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257694
  issn: 2329-9266
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB5q8aAHX1WsVsnBi2Bs9tVsjkUs6qEIKvS2ZJMsCLotffj7nclua0URvC0hCUsmyXyTmfkG4CIOQmnDXHAd55LHATkJI6N5gaZDkjhBjEe-2IQcDtPRSD024GqVC-Oc88Fn7po-vS_fjs2Cnsq6ishMKF96Q8pelau19p6CyNnXPUSMoLhCxbP0SgrVfeg_oS0Y-qCAKAjib1rIl1X5cRd7BTPY_d-v7cFODSRZv5L8PjRceQDba_SCLRj27zlpKct8vRtsY7q0jIJCuZ3SNce-yL4Zolc2e8edxN51uaCEB5_ByCZVKoGbHcLL4Pb55o7X9RO4QVA253mcFKow0koKuIyM0Gjc5KlVBlGc7ok8lbrIbVoUUWCMMEVi8Mg7opxD2OiC6Aia5bh0x8DSQDiB8xiX5DFigtQkVukidVHcC50J29BdrmdmanJxqnHxlnkjQ6gMJZCRBLJaAm24XI2YVMQaf_Rt0Yqv-tWL3YbOUmRZffJmGSIShUYfmpEnv486hS2auwq57UBzPl24M9g0H_PX2fTcb6pP1arIdw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_GFNQHv6Y4nZoHXwTj0q-1eRzi2HQOwQl7K22SguC6sQ__fu-ybk4UwbdSmrbkktzvkrvfD-DKd9xQu6ngiZ-G3HfokNBTCc8wdAgCI4jxyIpNhL1eNBjI5xLcrGphjDE2-czc0qU9y9cjNaetsrokMhOql94g5ayiWmttRwWxs1U-RJQguUTXszyXFLL-0HzBaNC1aQGe4_jf_JAVVvmxGlsX09r738_tw24BJVlzYfsDKJn8EHbWCAYr0Gt2OPkpzaziDd5jSa4ZpYVyPaGFjn3RfTPEr2w6xLHEhkk-p5IHW8PIxotiAjM9gtfWff-uzQsFBa4Qls146geZzFSoQ0q59JRIMLxJIy0V4rikIdIoTLJUR1nmOUoJlQUKJ70h0jkEjsbxjqGcj3JzAixyhBH4HmWC1EdUEKlAyySLjOc3XKPcKtSX_Rmrgl6cVC7eYxtmCBmjBWKyQFxYoArXqxbjBbXGH89WqMdXzxWdXYXa0mRxMfemMWISiWEfBpKnv7e6hK12_6kbdzu9xzPYpu8sEnBrUJ5N5uYcNtXH7G06ubAD7BNytcvA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI-based+modeling+and+data-driven+evaluation+for+smart+manufacturing+processes&rft.jtitle=IEEE%2FCAA+journal+of+automatica+sinica&rft.au=Ghahramani%2C+Mohammadhossein&rft.au=Qiao%2C+Yan&rft.au=Zhou%2C+Meng+Chu&rft.au=O%27Hagan%2C+Adrian&rft.date=2020-07-01&rft.issn=2329-9266&rft.eissn=2329-9274&rft.volume=7&rft.issue=4&rft.spage=1026&rft.epage=1037&rft_id=info:doi/10.1109%2FJAS.2020.1003114&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JAS_2020_1003114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-9266&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-9266&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-9266&client=summon