A Multi-Population Multi-Objective Evolutionary Algorithm Based on the Contribution of Decision Variables to Objectives for Large-Scale Multi/Many-Objective Optimization
Most existing multiobjective evolutionary algorithms treat all decision variables as a whole to perform genetic operations and optimize all objectives with one population at the same time. Considering different control attributes, different decision variables have different optimization effects on e...
Uloženo v:
| Vydáno v: | IEEE transactions on cybernetics Ročník 53; číslo 11; s. 6998 - 7007 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Piscataway
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Most existing multiobjective evolutionary algorithms treat all decision variables as a whole to perform genetic operations and optimize all objectives with one population at the same time. Considering different control attributes, different decision variables have different optimization effects on each objective, so decision variables can be divided into convergence- or diversity-related variables. In this article, we propose a new metric called the optimization degree of the convergence-related decision variable to each objective to calculate the contribution objective of each decision variable. All decision variables are grouped according to their contribution objectives. Then, a multiobjective evolutionary algorithm, namely, decision variable contributing to objectives evolutionary algorithm (DVCOEA), has been proposed. In order to balance the convergence and diversity of the population, the DVCOEA algorithm combines the multipopulation multiobjective framework, where two different optimization strategies are designed to optimize the subpopulation and individuals in the external archive, respectively. Finally, DVCOEA is compared with several state-of-the-art algorithms on a number of benchmark functions. Experimental results show that DVCOEA is a competitive approach for solving large-scale multi/many-objective problems. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 2168-2267 2168-2275 2168-2275 |
| DOI: | 10.1109/TCYB.2022.3180214 |