A New Weighted Fuzzy C-Means Clustering Algorithm for Remotely Sensed Image Classification
Fuzzy clustering model is an essential tool to find the proper cluster structure of given data sets in pattern and image classification. In this paper, a new weighted fuzzy C-Means (NW-FCM) algorithm is proposed to improve the performance of both FCM and FWCM models for high-dimensional multiclass p...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of selected topics in signal processing Jg. 5; H. 3; S. 543 - 553 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.06.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 1932-4553, 1941-0484 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Fuzzy clustering model is an essential tool to find the proper cluster structure of given data sets in pattern and image classification. In this paper, a new weighted fuzzy C-Means (NW-FCM) algorithm is proposed to improve the performance of both FCM and FWCM models for high-dimensional multiclass pattern recognition problems. The methodology used in NW-FCM is the concept of weighted mean from the nonparametric weighted feature extraction (NWFE) and cluster mean from discriminant analysis feature extraction (DAFE). These two concepts are combined in NW-FCM for unsupervised clustering. The main features of NW-FCM, when compared to FCM, are the inclusion of the weighted mean to increase the accuracy, and, when compared to FWCM, the centroid of each cluster is included to increase the stability. The motivation of this work is to meliorate the well-known fuzzy C-Means algorithm (FCM) and a recently proposed fuzzy weighted C-Means algorithm (FWCM). Our finding is that the proposed algorithm gives greater classification accuracy and stability than that of FCM and FWCM. Experimental results on both synthetic and real data demonstrate that the proposed clustering algorithm will generate better clustering results than those of FCM and FWCM algorithms, in particularly for hyperspectral images. |
|---|---|
| AbstractList | Fuzzy clustering model is an essential tool to find the proper cluster structure of given data sets in pattern and image classification. In this paper, a new weighted fuzzy C-Means (NW-FCM) algorithm is proposed to improve the performance of both FCM and FWCM models for high-dimensional multiclass pattern recognition problems. The methodology used in NW-FCM is the concept of weighted mean from the nonparametric weighted feature extraction (NWFE) and cluster mean from discriminant analysis feature extraction (DAFE). These two concepts are combined in NW-FCM for unsupervised clustering. The main features of NW-FCM, when compared to FCM, are the inclusion of the weighted mean to increase the accuracy, and, when compared to FWCM, the centroid of each cluster is included to increase the stability. The motivation of this work is to meliorate the well-known fuzzy C-Means algorithm (FCM) and a recently proposed fuzzy weighted C-Means algorithm (FWCM). Our finding is that the proposed algorithm gives greater classification accuracy and stability than that of FCM and FWCM. Experimental results on both synthetic and real data demonstrate that the proposed clustering algorithm will generate better clustering results than those of FCM and FWCM algorithms, in particularly for hyperspectral images. |
| Author | Chih-Cheng Hung Kulkarni, S Bor-Chen Kuo |
| Author_xml | – sequence: 1 surname: Chih-Cheng Hung fullname: Chih-Cheng Hung organization: Sch. of Comput. & Software Eng., Southern Polytech. State Univ., Marietta, GA, USA – sequence: 2 givenname: S surname: Kulkarni fullname: Kulkarni, S organization: Sch. of Comput. & Software Eng., Southern Polytech. State Univ., Marietta, GA, USA – sequence: 3 surname: Bor-Chen Kuo fullname: Bor-Chen Kuo organization: Grad. Inst. of Educ. Meas. & Stat., Nat. Taichung Univ., Taichung, Taiwan |
| BookMark | eNp9kMtOxCAUQInRxOcP6Ia4cVUFSqEsJxOf8RVHY-KGYOcyYtqiQGPGr5dxjAsXroDkHLicTbTa-x4Q2qXkkFKiji4m95PbQ0bymRElpJIraIMqTgvCa7662Jes4FVVrqPNGF8JqaSgfAM9jfA1fOBHcLOXBFN8Mnx-zvG4uALTRzxuh5gguH6GR-3MB5deOmx9wHfQ-QTtHE-gj1k778wMMm5idNY1Jjnfb6M1a9oIOz_rFno4Ob4fnxWXN6fn49Fl0ZRMpMIQsNyKKTVEyJpYy3ijVMmlEBxKSoXkTFY1MdOMG2qfqXquaGU4MDZVsim30MHy3rfg3weISXcuNtC2pgc_RF3Xipcyd8jk_h_y1Q-hz8PpOj8jMqkyVC-hJvgYA1jduPT9oRSMazUlepFcfyfXi-T6J3lW2R_1LbjOhPn_0t5ScgDwK1Siqimh5RfS8Y3V |
| CODEN | IJSTGY |
| CitedBy_id | crossref_primary_10_1155_2015_597313 crossref_primary_10_3390_s140712523 crossref_primary_10_1016_j_sigpro_2013_09_009 crossref_primary_10_1109_MGRS_2020_3032575 crossref_primary_10_1109_TFUZZ_2020_2966173 crossref_primary_10_1155_2013_515386 crossref_primary_10_1109_ACCESS_2017_2695616 crossref_primary_10_1109_TGRS_2024_3424227 crossref_primary_10_1109_JSTARS_2018_2846603 crossref_primary_10_1109_TKDE_2019_2924623 crossref_primary_10_1016_j_fss_2015_10_005 crossref_primary_10_3390_rs15020529 crossref_primary_10_1016_j_patrec_2017_02_015 crossref_primary_10_1109_JSTARS_2013_2259470 crossref_primary_10_1016_j_media_2013_08_003 crossref_primary_10_1016_j_knosys_2016_12_006 crossref_primary_10_1049_iet_ipr_2018_5108 crossref_primary_10_1007_s11770_014_0451_3 crossref_primary_10_1016_j_asoc_2015_08_029 crossref_primary_10_1016_j_isprsjprs_2014_08_006 crossref_primary_10_1145_3357233 crossref_primary_10_1155_2015_513039 crossref_primary_10_1109_LGRS_2013_2273792 crossref_primary_10_1016_j_iot_2025_101494 crossref_primary_10_3390_rs13163288 crossref_primary_10_3390_s22155906 crossref_primary_10_1007_s12145_023_01208_z crossref_primary_10_1109_TGRS_2019_2940991 crossref_primary_10_1016_j_proeng_2012_06_213 crossref_primary_10_1109_LGRS_2013_2268847 crossref_primary_10_1007_s11334_024_00593_y crossref_primary_10_1016_j_cogsys_2019_02_005 crossref_primary_10_1109_TFUZZ_2020_3022080 crossref_primary_10_1109_JSTARS_2023_3333281 crossref_primary_10_1007_s13042_014_0227_3 crossref_primary_10_1109_TGRS_2023_3241193 crossref_primary_10_1155_2016_5623913 crossref_primary_10_1364_AO_54_00F149 crossref_primary_10_1108_DTA_11_2020_0262 crossref_primary_10_1016_j_knosys_2020_106178 crossref_primary_10_1109_ACCESS_2019_2950665 crossref_primary_10_1016_j_bspc_2020_102111 crossref_primary_10_1016_j_icte_2022_10_004 crossref_primary_10_1007_s40815_019_00740_9 crossref_primary_10_3233_JAE_170043 crossref_primary_10_1007_s00500_014_1264_2 crossref_primary_10_1109_JSEN_2015_2447012 crossref_primary_10_1109_TFUZZ_2023_3319663 crossref_primary_10_3233_ICA_210652 crossref_primary_10_3390_app142311227 crossref_primary_10_1007_s11042_024_18562_9 crossref_primary_10_1007_s11517_014_1210_6 crossref_primary_10_1007_s13042_020_01257_6 crossref_primary_10_1002_cem_2865 crossref_primary_10_1109_TFUZZ_2013_2280141 crossref_primary_10_1080_2150704X_2016_1249295 crossref_primary_10_1016_j_ascom_2015_03_003 crossref_primary_10_1016_j_ins_2015_05_007 crossref_primary_10_1109_TFUZZ_2020_2968879 crossref_primary_10_3233_IFS_151811 crossref_primary_10_1109_TFUZZ_2017_2686804 crossref_primary_10_1155_2014_179457 crossref_primary_10_1016_j_future_2018_04_045 |
| Cites_doi | 10.1177/001316446002000104 10.1109/91.771092 10.1142/S0218488507004650 10.1016/j.patcog.2005.07.005 10.1109/TGRS.2004.825578 10.1007/978-1-4757-0450-1 10.1109/91.784198 10.1109/91.366564 10.1109/34.85677 10.1109/91.531779 10.1007/978-3-642-97610-0 10.1109/IVELEC.2009.5193407 10.1109/91.227387 10.1002/0471723800 10.1109/ICSMC.2004.1401288 10.1109/78.124968 10.1016/S0167-9473(96)00026-6 10.1016/S0165-0114(98)00164-X |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2011 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD H8D L7M |
| DOI | 10.1109/JSTSP.2010.2096797 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Aerospace Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0484 |
| EndPage | 553 |
| ExternalDocumentID | 2351406831 10_1109_JSTSP_2010_2096797 5658101 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION 7SP 8FD H8D L7M RIG |
| ID | FETCH-LOGICAL-c326t-a0ef4f6d1a06780ff24c99347664e31167427580ad326a1fb19b515a4e22d97c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 92 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000290750700016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1932-4553 |
| IngestDate | Sat Sep 27 21:35:52 EDT 2025 Mon Jun 30 10:14:50 EDT 2025 Sat Nov 29 03:55:50 EST 2025 Tue Nov 18 21:39:59 EST 2025 Tue Aug 26 17:17:22 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c326t-a0ef4f6d1a06780ff24c99347664e31167427580ad326a1fb19b515a4e22d97c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 867468899 |
| PQPubID | 75721 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_867468899 crossref_citationtrail_10_1109_JSTSP_2010_2096797 ieee_primary_5658101 crossref_primary_10_1109_JSTSP_2010_2096797 proquest_miscellaneous_889437048 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-June 2011-06-00 20110601 |
| PublicationDateYYYYMMDD | 2011-06-01 |
| PublicationDate_xml | – month: 06 year: 2011 text: 2011-June |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE journal of selected topics in signal processing |
| PublicationTitleAbbrev | JSTSP |
| PublicationYear | 2011 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref1 blake (ref6) 1998 ref16 ref19 li (ref17) 2008; 10 kohonen (ref11) 1995 foody (ref9) 1992; 58 fukunaga (ref10) 1990 ref24 (ref5) 1992 ref23 duda (ref8) 1973 ref26 ref25 ref20 ref22 ref21 ref7 balasko (ref2) 0 ref4 ref3 ma (ref18) 1995; 61 |
| References_xml | – ident: ref7 doi: 10.1177/001316446002000104 – ident: ref4 doi: 10.1109/91.771092 – year: 1990 ident: ref10 publication-title: Introduction to statistical pattern recognition – ident: ref26 doi: 10.1142/S0218488507004650 – ident: ref25 doi: 10.1016/j.patcog.2005.07.005 – ident: ref15 doi: 10.1109/TGRS.2004.825578 – ident: ref3 doi: 10.1007/978-1-4757-0450-1 – ident: ref22 doi: 10.1109/91.784198 – year: 1973 ident: ref8 publication-title: Pattern Classification and Scene Analysis – ident: ref12 doi: 10.1109/91.366564 – year: 1992 ident: ref5 publication-title: Fuzzy Models for Pattern Recognition – ident: ref24 doi: 10.1109/34.85677 – ident: ref14 doi: 10.1109/91.531779 – volume: 61 start-page: 435 year: 1995 ident: ref18 article-title: Tau coefficient for accuracy assessment of classification of remote sensing data publication-title: Photogrammetric Eng Remote Sens – year: 1995 ident: ref11 publication-title: Self-Organizing Maps doi: 10.1007/978-3-642-97610-0 – ident: ref1 doi: 10.1109/IVELEC.2009.5193407 – year: 1998 ident: ref6 publication-title: UCI repository of machine learning databases – ident: ref13 doi: 10.1109/91.227387 – ident: ref16 doi: 10.1002/0471723800 – volume: 10 start-page: 168 year: 2008 ident: ref17 article-title: A novel fuzzy weighted C-means method for image classification publication-title: Int J Fuzzy Syst – ident: ref19 doi: 10.1109/ICSMC.2004.1401288 – ident: ref23 doi: 10.1109/78.124968 – ident: ref20 doi: 10.1016/S0167-9473(96)00026-6 – ident: ref21 doi: 10.1016/S0165-0114(98)00164-X – volume: 58 start-page: 221 year: 1992 ident: ref9 article-title: A fuzzy sets approach to the representation of vegetation continua from remotely sensed data: An example from lowland heath publication-title: Photogrammetric Eng Remote Sens – year: 0 ident: ref2 publication-title: Fuzzy Clustering and Data Analysis Toolbox for Use with Matlab |
| SSID | ssj0057614 |
| Score | 2.300383 |
| Snippet | Fuzzy clustering model is an essential tool to find the proper cluster structure of given data sets in pattern and image classification. In this paper, a new... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 543 |
| SubjectTerms | Accuracy Algorithm design and analysis Algorithms Classification algorithms Clustering Clustering algorithms Clusters Discriminant analysis feature extraction (DAFE) Feature extraction Fuzzy fuzzy C-means algorithm (FCM) Fuzzy logic Fuzzy set theory fuzzy weighted C-means algorithm (FWCM) nonparametric weighted feature extraction (NWFE) Pattern recognition Principal component analysis Studies |
| Title | A New Weighted Fuzzy C-Means Clustering Algorithm for Remotely Sensed Image Classification |
| URI | https://ieeexplore.ieee.org/document/5658101 https://www.proquest.com/docview/867468899 https://www.proquest.com/docview/889437048 |
| Volume | 5 |
| WOSCitedRecordID | wos000290750700016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057614 issn: 1932-4553 databaseCode: RIE dateStart: 20070101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_o8KAHv8U5lRy8abVtsqY9juFQUBE_ULyUNHlRYW4yV0H_el_SbgiK4K3Ql9Lml77P5PcA9izZsESkPOBaUYDCpQhSrUzAhTWFtBkK9CSuZ_LiIr2_zy5n4GB6FgYR_eYzPHSXvpZvhrp0qbIjcj4cH9UszEopq7NaE61LbnNUV5DjQLTbfHJAJsyOaIlfX1a7uGLy2KUjePpmhHxXlR-q2NuX3tL_3mwZFms_knUq4FdgBgersPCNXXANHjqMVBi788lPNKxXfn5-sG5wjmSeWLdfOo4EkmSd_uNw9Dx-emHkwbIrJPSw_8GuKcKlYacvpHKYb57pthV5JNfhtnd80z0J6lYKgSb_bByoEK2wiYmUs06htbHQ5JkImSQCuavFiJgih1AZEleRLaKsIE9HEVKxyaTmG9AYDAe4CcwWRaYwtJoMmWijUe1CZya0mBTcKJ40IZrMba5rnnHX7qKf-3gjzHKPR-7wyGs8mrA_HfNasWz8Kb3mEJhK1pPfhNYEwrz-Ed_ylL4sSSmobAKb3qU_yJVF1ACHJYk4CnpJmmzr9-e2YL5KJLvUyzY0xqMSd2BOv4-f30a7fhV-AVr32f4 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9swEB62aaHbQ1_Z0jR96NBb68a25NcxhIaEJmFpUnbpxcjSaBvIY0niQvLrO5KdsLCl0JvBI2Prk-cpfQPw0ZANi0XKPa4kBSg8EV6qpPa4MLpITIYCHYnrKJlM0uvr7PIMPp_OwiCi23yGX-ylq-XrtSptqqxDzoflo3oADyMhwqA6rXXUu-Q4B3UNOfREFPHjERk_69Ain15W-7hC8tkTS_F0xwy5vir3lLGzMP1n__duz-Fp7UmybgX9CzjD1Ut4codfsAk_u4yUGLty6U_UrF8eDnvW88ZIBor1FqVlSSBJ1l3crDfz3a8lIx-WfUfCDxd7NqUYl4YNl6R0mGufaTcWOSwv4Ef_66w38OpmCp4iD23nSR-NMLEOpLVPvjGhUOSbiCSOBXJbjREhxQ6-1CQuA1MEWUG-jiSsQp0lir-Cxmq9wtfATFFkEn2jyJSJCLWMCpVp32BccC153ILgOLe5qpnGbcOLRe4iDj_LHR65xSOv8WjBp9OY24pn45_STYvASbKe_Ba0jxDm9a-4zVP6sjilsLIF7HSX_iFbGJErXJckYknoE9Jlb_7-3A_weDAbj_LRcPKtDedVWtkmYt5CY7cp8R08Ur938-3mvVuRfwDYkt1F |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Weighted+Fuzzy+C-Means+Clustering+Algorithm+for+Remotely+Sensed+Image+Classification&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Hung%2C+Chih-Cheng&rft.au=Kulkarni%2C+Sameer&rft.au=Kuo%2C+Bor-Chen&rft.date=2011-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1932-4553&rft.eissn=1941-0484&rft.volume=5&rft.issue=3&rft.spage=543&rft_id=info:doi/10.1109%2FJSTSP.2010.2096797&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2351406831 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon |