Representation and evaluation of the Arrhenius and general temperature integrals by special functions

•The general temperature integral can be expressed by several special functions.•The special function models are more accurate than the numerical integration methods.•New rational approximations can be obtained by expansion of the special functions.•New iterative isoconversional method with very hig...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Thermochimica acta Ročník 705; s. 179034
Hlavný autor: Aghili, Alireza
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.11.2021
Predmet:
ISSN:0040-6031, 1872-762X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •The general temperature integral can be expressed by several special functions.•The special function models are more accurate than the numerical integration methods.•New rational approximations can be obtained by expansion of the special functions.•New iterative isoconversional method with very high accuracy is proposed. The non-isothermal analysis of reactions with a constant heating rate involves a temperature integral. This integral is popularized as the Arrhenius integral, but when the pre-exponential factor of the Arrhenius equation depends on temperature with a power-law relationship, the integral is known as the general temperature integral. In this paper, it is shown that when the activation energy and exponent of power-law assumed to be constant, these integrals can be expressed and evaluated by several kinds of special functions and using commercial or free softwares. The special functions include exponential integral function, incomplete gamma function, confluent hypergeometric function, Whittaker function and generalized hypergeometric function. New rational approximations can be obtained by expansion of the special functions. MATLAB and GNU Octave were used to compute the special function models as well as numerical integration. The accuracy of these methods was examined by variable precision arithmetic. For both softwares, the special function models showed higher accuracies compared to the numerical integration methods and the approximation functions. In addition, new iterative isoconversional method for constant activation energy and exponent of power-law has been proposed that shows very high accuracy in calculation of the activation energy.
AbstractList The non-isothermal analysis of reactions with a constant heating rate involves a temperature integral. This integral is popularized as the Arrhenius integral, but when the pre-exponential factor of the Arrhenius equation depends on temperature with a power-law relationship, the integral is known as the general temperature integral. In this paper, it is shown that when the activation energy and exponent of power-law assumed to be constant, these integrals can be expressed and evaluated by several kinds of special functions and using commercial or free softwares. The special functions include exponential integral function, incomplete gamma function, confluent hypergeometric function, Whittaker function and generalized hypergeometric function. New rational approximations can be obtained by expansion of the special functions. MATLAB and GNU Octave were used to compute the special function models as well as numerical integration. The accuracy of these methods was examined by variable precision arithmetic. For both softwares, the special function models showed higher accuracies compared to the numerical integration methods and the approximation functions. In addition, new iterative isoconversional method for constant activation energy and exponent of power-law has been proposed that shows very high accuracy in calculation of the activation energy.
•The general temperature integral can be expressed by several special functions.•The special function models are more accurate than the numerical integration methods.•New rational approximations can be obtained by expansion of the special functions.•New iterative isoconversional method with very high accuracy is proposed. The non-isothermal analysis of reactions with a constant heating rate involves a temperature integral. This integral is popularized as the Arrhenius integral, but when the pre-exponential factor of the Arrhenius equation depends on temperature with a power-law relationship, the integral is known as the general temperature integral. In this paper, it is shown that when the activation energy and exponent of power-law assumed to be constant, these integrals can be expressed and evaluated by several kinds of special functions and using commercial or free softwares. The special functions include exponential integral function, incomplete gamma function, confluent hypergeometric function, Whittaker function and generalized hypergeometric function. New rational approximations can be obtained by expansion of the special functions. MATLAB and GNU Octave were used to compute the special function models as well as numerical integration. The accuracy of these methods was examined by variable precision arithmetic. For both softwares, the special function models showed higher accuracies compared to the numerical integration methods and the approximation functions. In addition, new iterative isoconversional method for constant activation energy and exponent of power-law has been proposed that shows very high accuracy in calculation of the activation energy.
ArticleNumber 179034
Author Aghili, Alireza
Author_xml – sequence: 1
  givenname: Alireza
  orcidid: 0000-0002-9997-1549
  surname: Aghili
  fullname: Aghili, Alireza
  email: aghili@iaushiraz.ac.ir, alirezaaghili@yahoo.com
  organization: Department of Polymer Engineering, Shiraz Branch, Islamic Azad University, Shiraz 71987-74731, Iran
BookMark eNp9kD1rwzAQhkVJoUnaH9DNYxenJ1mxYjqF0C8IFEoL3YQsnxIFR3YlOZB_X6fu1CHT6XTvc3DPhIxc45CQWwozCjS_382iVjMGjM6oKCDjF2RMF4KlImdfIzIG4JDmkNErMglhBwCULWBM8B1bjwFdVNE2LlGuSvCg6m5oG5PELSZL77fobBd-5xt06FWdRNy3_SN2HhPrIm76z5CUxyS0qG0fMJ3TpzXhmlyafoY3f3VKPp8eP1Yv6frt-XW1XKc6Y3lMF3kmDIqy4HqRCQAD5ZwWggnKKjavUFRzLopSGc6LwiimBcMSuaFY8VJQlU3J3bC39c13hyHKvQ0a61o5bLogWZ7lOQcQrI_SIap9E4JHI1tv98ofJQV5Uip3slcqT0rloLRnxD9G28Fb9MrWZ8mHgcT--oNFL4O26DRW1qOOsmrsGfoHQQCUcQ
CitedBy_id crossref_primary_10_3390_molecules28010424
crossref_primary_10_1016_j_tca_2024_179698
crossref_primary_10_1016_j_biteb_2023_101500
crossref_primary_10_1080_00986445_2023_2300791
crossref_primary_10_1080_15567036_2024_2303389
crossref_primary_10_1088_2516_1083_ac7190
crossref_primary_10_3390_separations10090480
crossref_primary_10_1002_mats_202300038
crossref_primary_10_1002_mats_202500063
crossref_primary_10_1038_s41598_023_29636_3
crossref_primary_10_1016_j_chemphys_2022_111801
crossref_primary_10_1007_s11144_025_02964_3
crossref_primary_10_1002_kin_70000
crossref_primary_10_1016_j_eurpolymj_2024_113550
crossref_primary_10_1016_j_tca_2025_180099
crossref_primary_10_1109_TCPMT_2024_3424343
crossref_primary_10_1016_j_tca_2024_179839
crossref_primary_10_1016_j_fuel_2024_133144
Cites_doi 10.1007/s10973-009-0323-x
10.1007/s10853-006-1067-7
10.1002/jcc.21195
10.1007/BF01903696
10.1016/j.solidstatesciences.2009.04.009
10.1016/S1006-706X(15)30097-2
10.1007/s10973-013-3459-7
10.1007/s10910-021-01273-z
10.1021/ci950062m
10.1016/j.tca.2011.03.034
10.1002/aic.11775
10.1002/aic.11296
10.1007/s10973-006-8178-x
10.1002/kin.21416
10.1007/s10973-009-0366-z
10.1007/s10910-017-0845-6
10.1016/j.fuel.2019.116720
10.1002/1096-987X(20010130)22:2<178::AID-JCC5>3.0.CO;2-#
10.1007/s10973-006-7942-2
10.1007/s10973-008-9388-1
10.1016/j.solidstatesciences.2007.03.022
10.1007/s10910-006-9215-5
10.1016/j.ijhydene.2018.02.064
10.1039/D0PY00554A
10.1016/S0040-6031(97)00046-4
10.1007/s10973-007-8279-1
10.1351/pac199668010149
10.1007/BF01909897
10.1039/C5RA23731A
10.1007/s10973-005-0790-7
10.1007/s10973-005-0948-3
10.1002/jcc.23813
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.tca.2021.179034
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1872-762X
ExternalDocumentID 10_1016_j_tca_2021_179034
S0040603121001751
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5VS
6TJ
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJQLL
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HMU
HVGLF
HZ~
IHE
J1W
KOM
M36
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCH
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSK
SSM
SSZ
T5K
T9H
WH7
WUQ
XPP
YK3
ZMT
~02
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c326t-8637fe7b94c83700f0b51972712d25de7d5479baf4499fa2c72ebe4f1ed4b71a3
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704400600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0040-6031
IngestDate Mon Sep 29 06:30:16 EDT 2025
Sat Nov 29 07:29:11 EST 2025
Tue Nov 18 22:11:48 EST 2025
Fri Feb 23 02:43:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Arrhenius integral
Thermal analysis
General temperature integral
Special functions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c326t-8637fe7b94c83700f0b51972712d25de7d5479baf4499fa2c72ebe4f1ed4b71a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9997-1549
PQID 2636640072
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636640072
crossref_primary_10_1016_j_tca_2021_179034
crossref_citationtrail_10_1016_j_tca_2021_179034
elsevier_sciencedirect_doi_10_1016_j_tca_2021_179034
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
20211101
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Thermochimica acta
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Casal, Marbán (bib0013) 2020; 52
Kovács (bib0019) 2020; 264
Vyazovkin (bib0023) 2011; 520
Abramowitz, Stegun (bib0020) 1965; Vol. 55
Gorbachev (bib0002) 1976; 10
Deng, Cai, Liu (bib0026) 2009; 11
Šimon (bib0034) 2014; 115
Cai, Liu (bib0001) 2008; 43
Criado, Pérez-Maqueda, Sánchez (bib0017) 2005; 82
Olver (bib0021) 2010
GNU Scientific Library, Special Functions. Available from
Arabli, Aghili (bib0032) 2016; 6
Cai, Liu (bib0004) 2007; 90
Chen, Liu (bib0007) 2009; 55
Wanjun (bib0003) 2005; 81
Sun, Chen, Jun (bib0030) 2015; 22
Turányi, Tomlin (bib0018) 2014; Vol. 20
Vyazovkin, Dollimore (bib0024) 1996; 36
Starink (bib0031) 2018; 43
Wanjun, Donghua (bib0009) 2009; 98
Cai, Liu, Wang (bib0005) 2007; 9
Galukhin (bib0025) 2020; 11
Ji (bib0027) 2008; 91
Chen, Liu (bib0008) 2009; 96
Flynn (bib0015) 1997; 300
Órfão (bib0028) 2007; 53
.
Capela, Capela, Ribeiro (bib0010) 2009; 97
Xia, Liu (bib0011) 2018; 56
Cai, Chen (bib0036) 2009; 30
Senum, Yang (bib0029) 1977; 11
Chen, Liu (bib0006) 2007; 90
Laidler (bib0016) 1996; 68
Starink (bib0033) 2007; 42
Aghili, Sukhorukova, Ugon (bib0014) 2021
Dubaj, Cibulková, Šimon (bib0037) 2015; 36
Lei (bib0012) 2020
Vyazovkin (bib0035) 2001; 22
Capela (10.1016/j.tca.2021.179034_bib0010) 2009; 97
Criado (10.1016/j.tca.2021.179034_bib0017) 2005; 82
Deng (10.1016/j.tca.2021.179034_bib0026) 2009; 11
Flynn (10.1016/j.tca.2021.179034_bib0015) 1997; 300
Wanjun (10.1016/j.tca.2021.179034_bib0009) 2009; 98
Cai (10.1016/j.tca.2021.179034_bib0004) 2007; 90
Casal (10.1016/j.tca.2021.179034_bib0013) 2020; 52
Vyazovkin (10.1016/j.tca.2021.179034_bib0035) 2001; 22
Cai (10.1016/j.tca.2021.179034_bib0001) 2008; 43
Chen (10.1016/j.tca.2021.179034_bib0008) 2009; 96
Senum (10.1016/j.tca.2021.179034_bib0029) 1977; 11
Dubaj (10.1016/j.tca.2021.179034_bib0037) 2015; 36
Chen (10.1016/j.tca.2021.179034_bib0006) 2007; 90
Starink (10.1016/j.tca.2021.179034_bib0031) 2018; 43
Galukhin (10.1016/j.tca.2021.179034_bib0025) 2020; 11
Ji (10.1016/j.tca.2021.179034_bib0027) 2008; 91
Cai (10.1016/j.tca.2021.179034_bib0005) 2007; 9
Kovács (10.1016/j.tca.2021.179034_bib0019) 2020; 264
Laidler (10.1016/j.tca.2021.179034_bib0016) 1996; 68
Arabli (10.1016/j.tca.2021.179034_bib0032) 2016; 6
Abramowitz (10.1016/j.tca.2021.179034_bib0020) 1965; Vol. 55
Gorbachev (10.1016/j.tca.2021.179034_bib0002) 1976; 10
Wanjun (10.1016/j.tca.2021.179034_bib0003) 2005; 81
Chen (10.1016/j.tca.2021.179034_bib0007) 2009; 55
10.1016/j.tca.2021.179034_bib0022
Šimon (10.1016/j.tca.2021.179034_bib0034) 2014; 115
Sun (10.1016/j.tca.2021.179034_bib0030) 2015; 22
Órfão (10.1016/j.tca.2021.179034_bib0028) 2007; 53
Cai (10.1016/j.tca.2021.179034_bib0036) 2009; 30
Xia (10.1016/j.tca.2021.179034_bib0011) 2018; 56
Olver (10.1016/j.tca.2021.179034_bib0021) 2010
Starink (10.1016/j.tca.2021.179034_bib0033) 2007; 42
Turányi (10.1016/j.tca.2021.179034_bib0018) 2014; Vol. 20
Aghili (10.1016/j.tca.2021.179034_bib0014) 2021
Lei (10.1016/j.tca.2021.179034_bib0012) 2020
Vyazovkin (10.1016/j.tca.2021.179034_bib0023) 2011; 520
Vyazovkin (10.1016/j.tca.2021.179034_bib0024) 1996; 36
References_xml – volume: 36
  start-page: 42
  year: 1996
  end-page: 45
  ident: bib0024
  article-title: Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 30
  start-page: 1986
  year: 2009
  end-page: 1991
  ident: bib0036
  article-title: A new iterative linear integral isoconversional method for the determination of the activation energy varying with the conversion degree
  publication-title: J. Comput. Chem.
– volume: 42
  start-page: 483
  year: 2007
  end-page: 489
  ident: bib0033
  article-title: Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral
  publication-title: J. Mater. Sci.
– volume: 81
  start-page: 347
  year: 2005
  end-page: 349
  ident: bib0003
  article-title: Approximate formulae for calculation of the integral int T^m exp (-E/RT) dT
  publication-title: J. Therm. Anal. Calorim.
– year: 2010
  ident: bib0021
  article-title: NIST Handbook of Mathematical Functions
– volume: 68
  start-page: 149
  year: 1996
  end-page: 192
  ident: bib0016
  article-title: A glossary of terms used in chemical kinetics, including reaction dynamics (IUPAC Recommendations 1996)
  publication-title: Pure Appl. Chem.
– volume: 22
  start-page: 961
  year: 2015
  end-page: 968
  ident: bib0030
  article-title: Investigation into hydrogen diffusion and susceptibility of hydrogen embrittlement of high strength 0Cr16Ni5Mo steel
  publication-title: J. Iron Steel Res., Int.
– volume: 43
  start-page: 6632
  year: 2018
  end-page: 6641
  ident: bib0031
  article-title: Analysis of hydrogen desorption from linear heating experiments: accuracy of activation energy determinations
  publication-title: Int. J. Hydrogen Energy
– volume: 22
  start-page: 178
  year: 2001
  end-page: 183
  ident: bib0035
  article-title: Modification of the integral isoconversional method to account for variation in the activation energy
  publication-title: J. Comput. Chem.
– volume: 97
  start-page: 521
  year: 2009
  end-page: 524
  ident: bib0010
  article-title: Approximations for the generalized temperature integral: a method based on quadrature rules
  publication-title: J. Therm. Anal. Calorim.
– volume: 52
  start-page: 990
  year: 2020
  end-page: 1005
  ident: bib0013
  article-title: Combined kinetic analysis of solid-state reactions: The integral method (ICKA)
  publication-title: Int. J. Chem. Kinet.
– volume: 11
  start-page: 4115
  year: 2020
  end-page: 4123
  ident: bib0025
  article-title: Solid-state polymerization of a novel cyanate ester based on 4-tert-butylcalix [6]arene
  publication-title: Polym. Chem.
– volume: 90
  start-page: 469
  year: 2007
  end-page: 474
  ident: bib0004
  article-title: New approximation for the general temperature integral
  publication-title: J. Therm. Anal. Calorim.
– volume: 55
  start-page: 1766
  year: 2009
  end-page: 1770
  ident: bib0007
  article-title: New approximate formula for the generalized temperature integral
  publication-title: AIChE J.
– start-page: 1
  year: 2020
  end-page: 8
  ident: bib0012
  article-title: New analytical approximate solution of the generalised temperature integral for kinetic reactions
  publication-title: Mater. Sci. Technol.
– volume: 300
  start-page: 83
  year: 1997
  end-page: 92
  ident: bib0015
  article-title: The ‘temperature integral’—its use and abuse
  publication-title: Thermochim. Acta
– volume: 9
  start-page: 421
  year: 2007
  end-page: 428
  ident: bib0005
  article-title: Kinetic analysis of solid-state reactions: A new integral method for nonisothermal kinetics with the dependence of the preexponential factor on the temperature (A= A0Tn)
  publication-title: Solid State Sci.
– volume: 43
  start-page: 637
  year: 2008
  end-page: 646
  ident: bib0001
  article-title: Dependence of the frequency factor on the temperature: a new integral method of nonisothermal kinetic analysis
  publication-title: J. Math. Chem.
– volume: 98
  start-page: 437
  year: 2009
  ident: bib0009
  article-title: New approximate formula for the generalized temperature integral
  publication-title: J. Therm. Anal. Calorim.
– volume: 53
  start-page: 2905
  year: 2007
  end-page: 2915
  ident: bib0028
  article-title: Review and evaluation of the approximations to the temperature integral
  publication-title: AIChE J.
– reference: GNU Scientific Library, Special Functions. Available from:
– volume: 11
  start-page: 445
  year: 1977
  end-page: 447
  ident: bib0029
  article-title: Rational approximations of the integral of the Arrhenius function
  publication-title: J. Therm. Anal.
– volume: 520
  start-page: 1
  year: 2011
  end-page: 19
  ident: bib0023
  article-title: ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data
  publication-title: Thermochim. Acta
– volume: 6
  start-page: 22331
  year: 2016
  end-page: 22340
  ident: bib0032
  article-title: Graphene oxide/vinyl ester resin nanocomposite: the effect of graphene oxide, curing kinetics, modeling, mechanical properties and thermal stability
  publication-title: RSC Adv.
– volume: 264
  year: 2020
  ident: bib0019
  article-title: Determination of rate parameters of key N/H/O elementary reactions based on H2/O2/NOx combustion experiments
  publication-title: Fuel
– volume: 82
  start-page: 671
  year: 2005
  end-page: 675
  ident: bib0017
  article-title: Jiménez Dependence of the preexponential factor on temperature
  publication-title: J. Therm. Anal. Calorim.
– volume: 10
  start-page: 447
  year: 1976
  end-page: 449
  ident: bib0002
  article-title: Algorism for the solution of the exponential integral in non-isothermal kinetics at linear heating
  publication-title: J. Therm. Anal. Calorim.
– reference: .
– volume: 90
  start-page: 449
  year: 2007
  end-page: 452
  ident: bib0006
  article-title: A procedure to approximate the generalized temperature integral
  publication-title: J. Therm. Anal. Calorim.
– volume: 96
  start-page: 175
  year: 2009
  end-page: 178
  ident: bib0008
  article-title: New approximate formulae for the generalized temperature integral
  publication-title: J. Therm. Anal. Calorim.
– volume: Vol. 20
  year: 2014
  ident: bib0018
  publication-title: Analysis of Kinetic Reaction Mechanisms
– volume: 56
  start-page: 1262
  year: 2018
  end-page: 1279
  ident: bib0011
  article-title: A theoretical method for obtaining Padé type approximation to temperature integrals via the Stieltjes integral
  publication-title: J. Math. Chem.
– volume: 91
  start-page: 885
  year: 2008
  end-page: 889
  ident: bib0027
  article-title: New rational fraction approximating formulas for the temperature integral
  publication-title: J. Therm. Anal. Calorim.
– volume: 115
  start-page: 853
  year: 2014
  end-page: 859
  ident: bib0034
  article-title: The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences
  publication-title: J. Therm. Anal. Calorim.
– year: 2021
  ident: bib0014
  article-title: Bivariate rational approximations of the general temperature integral
  publication-title: Accept. J. Mathematical Chem.
– volume: Vol. 55
  year: 1965
  ident: bib0020
  publication-title: Handbook of Mathematical Functions: With Formulas, Graphs, And Mathematical Tables
– volume: 36
  start-page: 392
  year: 2015
  end-page: 398
  ident: bib0037
  article-title: An incremental isoconversional method for kinetic analysis based on the orthogonal distance regression
  publication-title: J. Comput. Chem.
– volume: 11
  start-page: 1375
  year: 2009
  end-page: 1379
  ident: bib0026
  article-title: Kinetic analysis of solid-state reactions: evaluation of approximations to temperature integral and their applications
  publication-title: Solid State Sci.
– volume: 98
  start-page: 437
  year: 2009
  ident: 10.1016/j.tca.2021.179034_bib0009
  article-title: New approximate formula for the generalized temperature integral
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-009-0323-x
– volume: 42
  start-page: 483
  year: 2007
  ident: 10.1016/j.tca.2021.179034_bib0033
  article-title: Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-006-1067-7
– volume: 30
  start-page: 1986
  year: 2009
  ident: 10.1016/j.tca.2021.179034_bib0036
  article-title: A new iterative linear integral isoconversional method for the determination of the activation energy varying with the conversion degree
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21195
– volume: 11
  start-page: 445
  year: 1977
  ident: 10.1016/j.tca.2021.179034_bib0029
  article-title: Rational approximations of the integral of the Arrhenius function
  publication-title: J. Therm. Anal.
  doi: 10.1007/BF01903696
– volume: 11
  start-page: 1375
  year: 2009
  ident: 10.1016/j.tca.2021.179034_bib0026
  article-title: Kinetic analysis of solid-state reactions: evaluation of approximations to temperature integral and their applications
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2009.04.009
– year: 2010
  ident: 10.1016/j.tca.2021.179034_bib0021
– volume: 22
  start-page: 961
  year: 2015
  ident: 10.1016/j.tca.2021.179034_bib0030
  article-title: Investigation into hydrogen diffusion and susceptibility of hydrogen embrittlement of high strength 0Cr16Ni5Mo steel
  publication-title: J. Iron Steel Res., Int.
  doi: 10.1016/S1006-706X(15)30097-2
– volume: 115
  start-page: 853
  year: 2014
  ident: 10.1016/j.tca.2021.179034_bib0034
  article-title: The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-013-3459-7
– start-page: 1
  year: 2020
  ident: 10.1016/j.tca.2021.179034_bib0012
  article-title: New analytical approximate solution of the generalised temperature integral for kinetic reactions
  publication-title: Mater. Sci. Technol.
– year: 2021
  ident: 10.1016/j.tca.2021.179034_bib0014
  article-title: Bivariate rational approximations of the general temperature integral
  publication-title: Accept. J. Mathematical Chem.
  doi: 10.1007/s10910-021-01273-z
– volume: 36
  start-page: 42
  year: 1996
  ident: 10.1016/j.tca.2021.179034_bib0024
  article-title: Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci950062m
– volume: 520
  start-page: 1
  year: 2011
  ident: 10.1016/j.tca.2021.179034_bib0023
  article-title: ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2011.03.034
– volume: 55
  start-page: 1766
  year: 2009
  ident: 10.1016/j.tca.2021.179034_bib0007
  article-title: New approximate formula for the generalized temperature integral
  publication-title: AIChE J.
  doi: 10.1002/aic.11775
– ident: 10.1016/j.tca.2021.179034_bib0022
– volume: 53
  start-page: 2905
  year: 2007
  ident: 10.1016/j.tca.2021.179034_bib0028
  article-title: Review and evaluation of the approximations to the temperature integral
  publication-title: AIChE J.
  doi: 10.1002/aic.11296
– volume: 90
  start-page: 469
  year: 2007
  ident: 10.1016/j.tca.2021.179034_bib0004
  article-title: New approximation for the general temperature integral
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-006-8178-x
– volume: 52
  start-page: 990
  year: 2020
  ident: 10.1016/j.tca.2021.179034_bib0013
  article-title: Combined kinetic analysis of solid-state reactions: The integral method (ICKA)
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/kin.21416
– volume: 97
  start-page: 521
  year: 2009
  ident: 10.1016/j.tca.2021.179034_bib0010
  article-title: Approximations for the generalized temperature integral: a method based on quadrature rules
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-009-0366-z
– volume: 56
  start-page: 1262
  year: 2018
  ident: 10.1016/j.tca.2021.179034_bib0011
  article-title: A theoretical method for obtaining Padé type approximation to temperature integrals via the Stieltjes integral
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-017-0845-6
– volume: 264
  year: 2020
  ident: 10.1016/j.tca.2021.179034_bib0019
  article-title: Determination of rate parameters of key N/H/O elementary reactions based on H2/O2/NOx combustion experiments
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116720
– volume: 22
  start-page: 178
  year: 2001
  ident: 10.1016/j.tca.2021.179034_bib0035
  article-title: Modification of the integral isoconversional method to account for variation in the activation energy
  publication-title: J. Comput. Chem.
  doi: 10.1002/1096-987X(20010130)22:2<178::AID-JCC5>3.0.CO;2-#
– volume: 90
  start-page: 449
  year: 2007
  ident: 10.1016/j.tca.2021.179034_bib0006
  article-title: A procedure to approximate the generalized temperature integral
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-006-7942-2
– volume: 96
  start-page: 175
  year: 2009
  ident: 10.1016/j.tca.2021.179034_bib0008
  article-title: New approximate formulae for the generalized temperature integral
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-008-9388-1
– volume: 9
  start-page: 421
  year: 2007
  ident: 10.1016/j.tca.2021.179034_bib0005
  article-title: Kinetic analysis of solid-state reactions: A new integral method for nonisothermal kinetics with the dependence of the preexponential factor on the temperature (A= A0Tn)
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2007.03.022
– volume: 43
  start-page: 637
  year: 2008
  ident: 10.1016/j.tca.2021.179034_bib0001
  article-title: Dependence of the frequency factor on the temperature: a new integral method of nonisothermal kinetic analysis
  publication-title: J. Math. Chem.
  doi: 10.1007/s10910-006-9215-5
– volume: Vol. 55
  year: 1965
  ident: 10.1016/j.tca.2021.179034_bib0020
– volume: 43
  start-page: 6632
  year: 2018
  ident: 10.1016/j.tca.2021.179034_bib0031
  article-title: Analysis of hydrogen desorption from linear heating experiments: accuracy of activation energy determinations
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.02.064
– volume: 11
  start-page: 4115
  year: 2020
  ident: 10.1016/j.tca.2021.179034_bib0025
  article-title: Solid-state polymerization of a novel cyanate ester based on 4-tert-butylcalix [6]arene
  publication-title: Polym. Chem.
  doi: 10.1039/D0PY00554A
– volume: 300
  start-page: 83
  year: 1997
  ident: 10.1016/j.tca.2021.179034_bib0015
  article-title: The ‘temperature integral’—its use and abuse
  publication-title: Thermochim. Acta
  doi: 10.1016/S0040-6031(97)00046-4
– volume: 91
  start-page: 885
  year: 2008
  ident: 10.1016/j.tca.2021.179034_bib0027
  article-title: New rational fraction approximating formulas for the temperature integral
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-007-8279-1
– volume: 68
  start-page: 149
  year: 1996
  ident: 10.1016/j.tca.2021.179034_bib0016
  article-title: A glossary of terms used in chemical kinetics, including reaction dynamics (IUPAC Recommendations 1996)
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac199668010149
– volume: 10
  start-page: 447
  year: 1976
  ident: 10.1016/j.tca.2021.179034_bib0002
  article-title: Algorism for the solution of the exponential integral in non-isothermal kinetics at linear heating
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/BF01909897
– volume: 6
  start-page: 22331
  year: 2016
  ident: 10.1016/j.tca.2021.179034_bib0032
  article-title: Graphene oxide/vinyl ester resin nanocomposite: the effect of graphene oxide, curing kinetics, modeling, mechanical properties and thermal stability
  publication-title: RSC Adv.
  doi: 10.1039/C5RA23731A
– volume: Vol. 20
  year: 2014
  ident: 10.1016/j.tca.2021.179034_bib0018
– volume: 81
  start-page: 347
  year: 2005
  ident: 10.1016/j.tca.2021.179034_bib0003
  article-title: Approximate formulae for calculation of the integral int T^m exp (-E/RT) dT
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-005-0790-7
– volume: 82
  start-page: 671
  year: 2005
  ident: 10.1016/j.tca.2021.179034_bib0017
  article-title: Jiménez Dependence of the preexponential factor on temperature
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-005-0948-3
– volume: 36
  start-page: 392
  year: 2015
  ident: 10.1016/j.tca.2021.179034_bib0037
  article-title: An incremental isoconversional method for kinetic analysis based on the orthogonal distance regression
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23813
SSID ssj0001280
Score 2.4390404
Snippet •The general temperature integral can be expressed by several special functions.•The special function models are more accurate than the numerical integration...
The non-isothermal analysis of reactions with a constant heating rate involves a temperature integral. This integral is popularized as the Arrhenius integral,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 179034
SubjectTerms activation energy
arithmetics
Arrhenius integral
equations
General temperature integral
Special functions
temperature
Thermal analysis
Title Representation and evaluation of the Arrhenius and general temperature integrals by special functions
URI https://dx.doi.org/10.1016/j.tca.2021.179034
https://www.proquest.com/docview/2636640072
Volume 705
WOSCitedRecordID wos000704400600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-762X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001280
  issn: 0040-6031
  databaseCode: AIEXJ
  dateStart: 19950102
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3ba9swFIfFlg62l7Era3dBgz2tuMiKHFmPoXRsY5QxOsibkGVpTeicYiej3V-_I-viNKNlfdiLCY4thD_5nCP5nJ8QekeNLZW2KjMFMRkrlMgU-N2MMgPegenKqF5d_ws_Pi5nM_E17OLY9dsJ8KYpLy7E-X9FDecAtiudvQXu1CicgN8AHY6AHY7_BP5bn9saSop8qvEg6R1TAqZte2qa-dorNP_w2tP7TqcqiCxHHYmzzgWond-lft95wWGFb5FGWvtzqU_nTnnAiXMkSz91atlzX0cDpvW32lxjoHkottuwm65IgAR7HewmJ8WG5XNKX35Z8i-j7NcHFgcr7YSeaH4wXHtVAHvLMaV0wZiJtpDQhHRNSN_EXbRDeSHKEdqZfjqafU4-GLwuifmSrt_xe3af2bfVj-siki3f3AccJ4_QwzBTwFNP-DG6Y5on6P5h3KDvKTJXSWMgiQfSeGkxkMaJdP9_II03SONEGleXOJDGifQz9P3D0cnhxyzsmpFpCMVXWTkZc2t4JZh2wkbEksoVJ1Oe05oWteF1wbiolGUw2bWKak7hRWY2NzWreK7Gz9GoWTbmBcIWnk5eGFpDWMpg3iwMJaIqjVA1BMIl2UUkPjmpg6S829nkTF5LbBe9T7ecez2Vmy5mEYcMAaEP9CQMrZtuexvRSUDivoCpxizXnaST8WTCnFr-3m368RI9GN6KV2i0atfmNbqnf63mXfsmjL0_GN2OeA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representation+and+evaluation+of+the+Arrhenius+and+general+temperature+integrals+by+special+functions&rft.jtitle=Thermochimica+acta&rft.au=Aghili%2C+Alireza&rft.date=2021-11-01&rft.issn=0040-6031&rft.volume=705&rft.spage=179034&rft_id=info:doi/10.1016%2Fj.tca.2021.179034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tca_2021_179034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-6031&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-6031&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-6031&client=summon