Representation and evaluation of the Arrhenius and general temperature integrals by special functions
•The general temperature integral can be expressed by several special functions.•The special function models are more accurate than the numerical integration methods.•New rational approximations can be obtained by expansion of the special functions.•New iterative isoconversional method with very hig...
Uložené v:
| Vydané v: | Thermochimica acta Ročník 705; s. 179034 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.11.2021
|
| Predmet: | |
| ISSN: | 0040-6031, 1872-762X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •The general temperature integral can be expressed by several special functions.•The special function models are more accurate than the numerical integration methods.•New rational approximations can be obtained by expansion of the special functions.•New iterative isoconversional method with very high accuracy is proposed.
The non-isothermal analysis of reactions with a constant heating rate involves a temperature integral. This integral is popularized as the Arrhenius integral, but when the pre-exponential factor of the Arrhenius equation depends on temperature with a power-law relationship, the integral is known as the general temperature integral. In this paper, it is shown that when the activation energy and exponent of power-law assumed to be constant, these integrals can be expressed and evaluated by several kinds of special functions and using commercial or free softwares. The special functions include exponential integral function, incomplete gamma function, confluent hypergeometric function, Whittaker function and generalized hypergeometric function. New rational approximations can be obtained by expansion of the special functions. MATLAB and GNU Octave were used to compute the special function models as well as numerical integration. The accuracy of these methods was examined by variable precision arithmetic. For both softwares, the special function models showed higher accuracies compared to the numerical integration methods and the approximation functions. In addition, new iterative isoconversional method for constant activation energy and exponent of power-law has been proposed that shows very high accuracy in calculation of the activation energy. |
|---|---|
| AbstractList | The non-isothermal analysis of reactions with a constant heating rate involves a temperature integral. This integral is popularized as the Arrhenius integral, but when the pre-exponential factor of the Arrhenius equation depends on temperature with a power-law relationship, the integral is known as the general temperature integral. In this paper, it is shown that when the activation energy and exponent of power-law assumed to be constant, these integrals can be expressed and evaluated by several kinds of special functions and using commercial or free softwares. The special functions include exponential integral function, incomplete gamma function, confluent hypergeometric function, Whittaker function and generalized hypergeometric function. New rational approximations can be obtained by expansion of the special functions. MATLAB and GNU Octave were used to compute the special function models as well as numerical integration. The accuracy of these methods was examined by variable precision arithmetic. For both softwares, the special function models showed higher accuracies compared to the numerical integration methods and the approximation functions. In addition, new iterative isoconversional method for constant activation energy and exponent of power-law has been proposed that shows very high accuracy in calculation of the activation energy. •The general temperature integral can be expressed by several special functions.•The special function models are more accurate than the numerical integration methods.•New rational approximations can be obtained by expansion of the special functions.•New iterative isoconversional method with very high accuracy is proposed. The non-isothermal analysis of reactions with a constant heating rate involves a temperature integral. This integral is popularized as the Arrhenius integral, but when the pre-exponential factor of the Arrhenius equation depends on temperature with a power-law relationship, the integral is known as the general temperature integral. In this paper, it is shown that when the activation energy and exponent of power-law assumed to be constant, these integrals can be expressed and evaluated by several kinds of special functions and using commercial or free softwares. The special functions include exponential integral function, incomplete gamma function, confluent hypergeometric function, Whittaker function and generalized hypergeometric function. New rational approximations can be obtained by expansion of the special functions. MATLAB and GNU Octave were used to compute the special function models as well as numerical integration. The accuracy of these methods was examined by variable precision arithmetic. For both softwares, the special function models showed higher accuracies compared to the numerical integration methods and the approximation functions. In addition, new iterative isoconversional method for constant activation energy and exponent of power-law has been proposed that shows very high accuracy in calculation of the activation energy. |
| ArticleNumber | 179034 |
| Author | Aghili, Alireza |
| Author_xml | – sequence: 1 givenname: Alireza orcidid: 0000-0002-9997-1549 surname: Aghili fullname: Aghili, Alireza email: aghili@iaushiraz.ac.ir, alirezaaghili@yahoo.com organization: Department of Polymer Engineering, Shiraz Branch, Islamic Azad University, Shiraz 71987-74731, Iran |
| BookMark | eNp9kD1rwzAQhkVJoUnaH9DNYxenJ1mxYjqF0C8IFEoL3YQsnxIFR3YlOZB_X6fu1CHT6XTvc3DPhIxc45CQWwozCjS_382iVjMGjM6oKCDjF2RMF4KlImdfIzIG4JDmkNErMglhBwCULWBM8B1bjwFdVNE2LlGuSvCg6m5oG5PELSZL77fobBd-5xt06FWdRNy3_SN2HhPrIm76z5CUxyS0qG0fMJ3TpzXhmlyafoY3f3VKPp8eP1Yv6frt-XW1XKc6Y3lMF3kmDIqy4HqRCQAD5ZwWggnKKjavUFRzLopSGc6LwiimBcMSuaFY8VJQlU3J3bC39c13hyHKvQ0a61o5bLogWZ7lOQcQrI_SIap9E4JHI1tv98ofJQV5Uip3slcqT0rloLRnxD9G28Fb9MrWZ8mHgcT--oNFL4O26DRW1qOOsmrsGfoHQQCUcQ |
| CitedBy_id | crossref_primary_10_3390_molecules28010424 crossref_primary_10_1016_j_tca_2024_179698 crossref_primary_10_1016_j_biteb_2023_101500 crossref_primary_10_1080_00986445_2023_2300791 crossref_primary_10_1080_15567036_2024_2303389 crossref_primary_10_1088_2516_1083_ac7190 crossref_primary_10_3390_separations10090480 crossref_primary_10_1002_mats_202300038 crossref_primary_10_1002_mats_202500063 crossref_primary_10_1038_s41598_023_29636_3 crossref_primary_10_1016_j_chemphys_2022_111801 crossref_primary_10_1007_s11144_025_02964_3 crossref_primary_10_1002_kin_70000 crossref_primary_10_1016_j_eurpolymj_2024_113550 crossref_primary_10_1016_j_tca_2025_180099 crossref_primary_10_1109_TCPMT_2024_3424343 crossref_primary_10_1016_j_tca_2024_179839 crossref_primary_10_1016_j_fuel_2024_133144 |
| Cites_doi | 10.1007/s10973-009-0323-x 10.1007/s10853-006-1067-7 10.1002/jcc.21195 10.1007/BF01903696 10.1016/j.solidstatesciences.2009.04.009 10.1016/S1006-706X(15)30097-2 10.1007/s10973-013-3459-7 10.1007/s10910-021-01273-z 10.1021/ci950062m 10.1016/j.tca.2011.03.034 10.1002/aic.11775 10.1002/aic.11296 10.1007/s10973-006-8178-x 10.1002/kin.21416 10.1007/s10973-009-0366-z 10.1007/s10910-017-0845-6 10.1016/j.fuel.2019.116720 10.1002/1096-987X(20010130)22:2<178::AID-JCC5>3.0.CO;2-# 10.1007/s10973-006-7942-2 10.1007/s10973-008-9388-1 10.1016/j.solidstatesciences.2007.03.022 10.1007/s10910-006-9215-5 10.1016/j.ijhydene.2018.02.064 10.1039/D0PY00554A 10.1016/S0040-6031(97)00046-4 10.1007/s10973-007-8279-1 10.1351/pac199668010149 10.1007/BF01909897 10.1039/C5RA23731A 10.1007/s10973-005-0790-7 10.1007/s10973-005-0948-3 10.1002/jcc.23813 |
| ContentType | Journal Article |
| Copyright | 2021 |
| Copyright_xml | – notice: 2021 |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.tca.2021.179034 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1872-762X |
| ExternalDocumentID | 10_1016_j_tca_2021_179034 S0040603121001751 |
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 53G 5VS 6TJ 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNCT ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJQLL AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HMU HVGLF HZ~ IHE J1W KOM M36 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCH SDF SDG SDP SES SEW SPC SPCBC SSG SSK SSM SSZ T5K T9H WH7 WUQ XPP YK3 ZMT ~02 ~G- 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c326t-8637fe7b94c83700f0b51972712d25de7d5479baf4499fa2c72ebe4f1ed4b71a3 |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704400600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0040-6031 |
| IngestDate | Mon Sep 29 06:30:16 EDT 2025 Sat Nov 29 07:29:11 EST 2025 Tue Nov 18 22:11:48 EST 2025 Fri Feb 23 02:43:43 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Arrhenius integral Thermal analysis General temperature integral Special functions |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c326t-8637fe7b94c83700f0b51972712d25de7d5479baf4499fa2c72ebe4f1ed4b71a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9997-1549 |
| PQID | 2636640072 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2636640072 crossref_primary_10_1016_j_tca_2021_179034 crossref_citationtrail_10_1016_j_tca_2021_179034 elsevier_sciencedirect_doi_10_1016_j_tca_2021_179034 |
| PublicationCentury | 2000 |
| PublicationDate | November 2021 2021-11-00 20211101 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: November 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Thermochimica acta |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Casal, Marbán (bib0013) 2020; 52 Kovács (bib0019) 2020; 264 Vyazovkin (bib0023) 2011; 520 Abramowitz, Stegun (bib0020) 1965; Vol. 55 Gorbachev (bib0002) 1976; 10 Deng, Cai, Liu (bib0026) 2009; 11 Šimon (bib0034) 2014; 115 Cai, Liu (bib0001) 2008; 43 Criado, Pérez-Maqueda, Sánchez (bib0017) 2005; 82 Olver (bib0021) 2010 GNU Scientific Library, Special Functions. Available from Arabli, Aghili (bib0032) 2016; 6 Cai, Liu (bib0004) 2007; 90 Chen, Liu (bib0007) 2009; 55 Wanjun (bib0003) 2005; 81 Sun, Chen, Jun (bib0030) 2015; 22 Turányi, Tomlin (bib0018) 2014; Vol. 20 Vyazovkin, Dollimore (bib0024) 1996; 36 Starink (bib0031) 2018; 43 Wanjun, Donghua (bib0009) 2009; 98 Cai, Liu, Wang (bib0005) 2007; 9 Galukhin (bib0025) 2020; 11 Ji (bib0027) 2008; 91 Chen, Liu (bib0008) 2009; 96 Flynn (bib0015) 1997; 300 Órfão (bib0028) 2007; 53 . Capela, Capela, Ribeiro (bib0010) 2009; 97 Xia, Liu (bib0011) 2018; 56 Cai, Chen (bib0036) 2009; 30 Senum, Yang (bib0029) 1977; 11 Chen, Liu (bib0006) 2007; 90 Laidler (bib0016) 1996; 68 Starink (bib0033) 2007; 42 Aghili, Sukhorukova, Ugon (bib0014) 2021 Dubaj, Cibulková, Šimon (bib0037) 2015; 36 Lei (bib0012) 2020 Vyazovkin (bib0035) 2001; 22 Capela (10.1016/j.tca.2021.179034_bib0010) 2009; 97 Criado (10.1016/j.tca.2021.179034_bib0017) 2005; 82 Deng (10.1016/j.tca.2021.179034_bib0026) 2009; 11 Flynn (10.1016/j.tca.2021.179034_bib0015) 1997; 300 Wanjun (10.1016/j.tca.2021.179034_bib0009) 2009; 98 Cai (10.1016/j.tca.2021.179034_bib0004) 2007; 90 Casal (10.1016/j.tca.2021.179034_bib0013) 2020; 52 Vyazovkin (10.1016/j.tca.2021.179034_bib0035) 2001; 22 Cai (10.1016/j.tca.2021.179034_bib0001) 2008; 43 Chen (10.1016/j.tca.2021.179034_bib0008) 2009; 96 Senum (10.1016/j.tca.2021.179034_bib0029) 1977; 11 Dubaj (10.1016/j.tca.2021.179034_bib0037) 2015; 36 Chen (10.1016/j.tca.2021.179034_bib0006) 2007; 90 Starink (10.1016/j.tca.2021.179034_bib0031) 2018; 43 Galukhin (10.1016/j.tca.2021.179034_bib0025) 2020; 11 Ji (10.1016/j.tca.2021.179034_bib0027) 2008; 91 Cai (10.1016/j.tca.2021.179034_bib0005) 2007; 9 Kovács (10.1016/j.tca.2021.179034_bib0019) 2020; 264 Laidler (10.1016/j.tca.2021.179034_bib0016) 1996; 68 Arabli (10.1016/j.tca.2021.179034_bib0032) 2016; 6 Abramowitz (10.1016/j.tca.2021.179034_bib0020) 1965; Vol. 55 Gorbachev (10.1016/j.tca.2021.179034_bib0002) 1976; 10 Wanjun (10.1016/j.tca.2021.179034_bib0003) 2005; 81 Chen (10.1016/j.tca.2021.179034_bib0007) 2009; 55 10.1016/j.tca.2021.179034_bib0022 Šimon (10.1016/j.tca.2021.179034_bib0034) 2014; 115 Sun (10.1016/j.tca.2021.179034_bib0030) 2015; 22 Órfão (10.1016/j.tca.2021.179034_bib0028) 2007; 53 Cai (10.1016/j.tca.2021.179034_bib0036) 2009; 30 Xia (10.1016/j.tca.2021.179034_bib0011) 2018; 56 Olver (10.1016/j.tca.2021.179034_bib0021) 2010 Starink (10.1016/j.tca.2021.179034_bib0033) 2007; 42 Turányi (10.1016/j.tca.2021.179034_bib0018) 2014; Vol. 20 Aghili (10.1016/j.tca.2021.179034_bib0014) 2021 Lei (10.1016/j.tca.2021.179034_bib0012) 2020 Vyazovkin (10.1016/j.tca.2021.179034_bib0023) 2011; 520 Vyazovkin (10.1016/j.tca.2021.179034_bib0024) 1996; 36 |
| References_xml | – volume: 36 start-page: 42 year: 1996 end-page: 45 ident: bib0024 article-title: Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids publication-title: J. Chem. Inf. Comput. Sci. – volume: 30 start-page: 1986 year: 2009 end-page: 1991 ident: bib0036 article-title: A new iterative linear integral isoconversional method for the determination of the activation energy varying with the conversion degree publication-title: J. Comput. Chem. – volume: 42 start-page: 483 year: 2007 end-page: 489 ident: bib0033 article-title: Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral publication-title: J. Mater. Sci. – volume: 81 start-page: 347 year: 2005 end-page: 349 ident: bib0003 article-title: Approximate formulae for calculation of the integral int T^m exp (-E/RT) dT publication-title: J. Therm. Anal. Calorim. – year: 2010 ident: bib0021 article-title: NIST Handbook of Mathematical Functions – volume: 68 start-page: 149 year: 1996 end-page: 192 ident: bib0016 article-title: A glossary of terms used in chemical kinetics, including reaction dynamics (IUPAC Recommendations 1996) publication-title: Pure Appl. Chem. – volume: 22 start-page: 961 year: 2015 end-page: 968 ident: bib0030 article-title: Investigation into hydrogen diffusion and susceptibility of hydrogen embrittlement of high strength 0Cr16Ni5Mo steel publication-title: J. Iron Steel Res., Int. – volume: 43 start-page: 6632 year: 2018 end-page: 6641 ident: bib0031 article-title: Analysis of hydrogen desorption from linear heating experiments: accuracy of activation energy determinations publication-title: Int. J. Hydrogen Energy – volume: 22 start-page: 178 year: 2001 end-page: 183 ident: bib0035 article-title: Modification of the integral isoconversional method to account for variation in the activation energy publication-title: J. Comput. Chem. – volume: 97 start-page: 521 year: 2009 end-page: 524 ident: bib0010 article-title: Approximations for the generalized temperature integral: a method based on quadrature rules publication-title: J. Therm. Anal. Calorim. – volume: 52 start-page: 990 year: 2020 end-page: 1005 ident: bib0013 article-title: Combined kinetic analysis of solid-state reactions: The integral method (ICKA) publication-title: Int. J. Chem. Kinet. – volume: 11 start-page: 4115 year: 2020 end-page: 4123 ident: bib0025 article-title: Solid-state polymerization of a novel cyanate ester based on 4-tert-butylcalix [6]arene publication-title: Polym. Chem. – volume: 90 start-page: 469 year: 2007 end-page: 474 ident: bib0004 article-title: New approximation for the general temperature integral publication-title: J. Therm. Anal. Calorim. – volume: 55 start-page: 1766 year: 2009 end-page: 1770 ident: bib0007 article-title: New approximate formula for the generalized temperature integral publication-title: AIChE J. – start-page: 1 year: 2020 end-page: 8 ident: bib0012 article-title: New analytical approximate solution of the generalised temperature integral for kinetic reactions publication-title: Mater. Sci. Technol. – volume: 300 start-page: 83 year: 1997 end-page: 92 ident: bib0015 article-title: The ‘temperature integral’—its use and abuse publication-title: Thermochim. Acta – volume: 9 start-page: 421 year: 2007 end-page: 428 ident: bib0005 article-title: Kinetic analysis of solid-state reactions: A new integral method for nonisothermal kinetics with the dependence of the preexponential factor on the temperature (A= A0Tn) publication-title: Solid State Sci. – volume: 43 start-page: 637 year: 2008 end-page: 646 ident: bib0001 article-title: Dependence of the frequency factor on the temperature: a new integral method of nonisothermal kinetic analysis publication-title: J. Math. Chem. – volume: 98 start-page: 437 year: 2009 ident: bib0009 article-title: New approximate formula for the generalized temperature integral publication-title: J. Therm. Anal. Calorim. – volume: 53 start-page: 2905 year: 2007 end-page: 2915 ident: bib0028 article-title: Review and evaluation of the approximations to the temperature integral publication-title: AIChE J. – reference: GNU Scientific Library, Special Functions. Available from: – volume: 11 start-page: 445 year: 1977 end-page: 447 ident: bib0029 article-title: Rational approximations of the integral of the Arrhenius function publication-title: J. Therm. Anal. – volume: 520 start-page: 1 year: 2011 end-page: 19 ident: bib0023 article-title: ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data publication-title: Thermochim. Acta – volume: 6 start-page: 22331 year: 2016 end-page: 22340 ident: bib0032 article-title: Graphene oxide/vinyl ester resin nanocomposite: the effect of graphene oxide, curing kinetics, modeling, mechanical properties and thermal stability publication-title: RSC Adv. – volume: 264 year: 2020 ident: bib0019 article-title: Determination of rate parameters of key N/H/O elementary reactions based on H2/O2/NOx combustion experiments publication-title: Fuel – volume: 82 start-page: 671 year: 2005 end-page: 675 ident: bib0017 article-title: Jiménez Dependence of the preexponential factor on temperature publication-title: J. Therm. Anal. Calorim. – volume: 10 start-page: 447 year: 1976 end-page: 449 ident: bib0002 article-title: Algorism for the solution of the exponential integral in non-isothermal kinetics at linear heating publication-title: J. Therm. Anal. Calorim. – reference: . – volume: 90 start-page: 449 year: 2007 end-page: 452 ident: bib0006 article-title: A procedure to approximate the generalized temperature integral publication-title: J. Therm. Anal. Calorim. – volume: 96 start-page: 175 year: 2009 end-page: 178 ident: bib0008 article-title: New approximate formulae for the generalized temperature integral publication-title: J. Therm. Anal. Calorim. – volume: Vol. 20 year: 2014 ident: bib0018 publication-title: Analysis of Kinetic Reaction Mechanisms – volume: 56 start-page: 1262 year: 2018 end-page: 1279 ident: bib0011 article-title: A theoretical method for obtaining Padé type approximation to temperature integrals via the Stieltjes integral publication-title: J. Math. Chem. – volume: 91 start-page: 885 year: 2008 end-page: 889 ident: bib0027 article-title: New rational fraction approximating formulas for the temperature integral publication-title: J. Therm. Anal. Calorim. – volume: 115 start-page: 853 year: 2014 end-page: 859 ident: bib0034 article-title: The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences publication-title: J. Therm. Anal. Calorim. – year: 2021 ident: bib0014 article-title: Bivariate rational approximations of the general temperature integral publication-title: Accept. J. Mathematical Chem. – volume: Vol. 55 year: 1965 ident: bib0020 publication-title: Handbook of Mathematical Functions: With Formulas, Graphs, And Mathematical Tables – volume: 36 start-page: 392 year: 2015 end-page: 398 ident: bib0037 article-title: An incremental isoconversional method for kinetic analysis based on the orthogonal distance regression publication-title: J. Comput. Chem. – volume: 11 start-page: 1375 year: 2009 end-page: 1379 ident: bib0026 article-title: Kinetic analysis of solid-state reactions: evaluation of approximations to temperature integral and their applications publication-title: Solid State Sci. – volume: 98 start-page: 437 year: 2009 ident: 10.1016/j.tca.2021.179034_bib0009 article-title: New approximate formula for the generalized temperature integral publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-009-0323-x – volume: 42 start-page: 483 year: 2007 ident: 10.1016/j.tca.2021.179034_bib0033 article-title: Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral publication-title: J. Mater. Sci. doi: 10.1007/s10853-006-1067-7 – volume: 30 start-page: 1986 year: 2009 ident: 10.1016/j.tca.2021.179034_bib0036 article-title: A new iterative linear integral isoconversional method for the determination of the activation energy varying with the conversion degree publication-title: J. Comput. Chem. doi: 10.1002/jcc.21195 – volume: 11 start-page: 445 year: 1977 ident: 10.1016/j.tca.2021.179034_bib0029 article-title: Rational approximations of the integral of the Arrhenius function publication-title: J. Therm. Anal. doi: 10.1007/BF01903696 – volume: 11 start-page: 1375 year: 2009 ident: 10.1016/j.tca.2021.179034_bib0026 article-title: Kinetic analysis of solid-state reactions: evaluation of approximations to temperature integral and their applications publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2009.04.009 – year: 2010 ident: 10.1016/j.tca.2021.179034_bib0021 – volume: 22 start-page: 961 year: 2015 ident: 10.1016/j.tca.2021.179034_bib0030 article-title: Investigation into hydrogen diffusion and susceptibility of hydrogen embrittlement of high strength 0Cr16Ni5Mo steel publication-title: J. Iron Steel Res., Int. doi: 10.1016/S1006-706X(15)30097-2 – volume: 115 start-page: 853 year: 2014 ident: 10.1016/j.tca.2021.179034_bib0034 article-title: The mathematical incorrectness of the integral isoconversional methods in case of variable activation energy and the consequences publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-013-3459-7 – start-page: 1 year: 2020 ident: 10.1016/j.tca.2021.179034_bib0012 article-title: New analytical approximate solution of the generalised temperature integral for kinetic reactions publication-title: Mater. Sci. Technol. – year: 2021 ident: 10.1016/j.tca.2021.179034_bib0014 article-title: Bivariate rational approximations of the general temperature integral publication-title: Accept. J. Mathematical Chem. doi: 10.1007/s10910-021-01273-z – volume: 36 start-page: 42 year: 1996 ident: 10.1016/j.tca.2021.179034_bib0024 article-title: Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci950062m – volume: 520 start-page: 1 year: 2011 ident: 10.1016/j.tca.2021.179034_bib0023 article-title: ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data publication-title: Thermochim. Acta doi: 10.1016/j.tca.2011.03.034 – volume: 55 start-page: 1766 year: 2009 ident: 10.1016/j.tca.2021.179034_bib0007 article-title: New approximate formula for the generalized temperature integral publication-title: AIChE J. doi: 10.1002/aic.11775 – ident: 10.1016/j.tca.2021.179034_bib0022 – volume: 53 start-page: 2905 year: 2007 ident: 10.1016/j.tca.2021.179034_bib0028 article-title: Review and evaluation of the approximations to the temperature integral publication-title: AIChE J. doi: 10.1002/aic.11296 – volume: 90 start-page: 469 year: 2007 ident: 10.1016/j.tca.2021.179034_bib0004 article-title: New approximation for the general temperature integral publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-006-8178-x – volume: 52 start-page: 990 year: 2020 ident: 10.1016/j.tca.2021.179034_bib0013 article-title: Combined kinetic analysis of solid-state reactions: The integral method (ICKA) publication-title: Int. J. Chem. Kinet. doi: 10.1002/kin.21416 – volume: 97 start-page: 521 year: 2009 ident: 10.1016/j.tca.2021.179034_bib0010 article-title: Approximations for the generalized temperature integral: a method based on quadrature rules publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-009-0366-z – volume: 56 start-page: 1262 year: 2018 ident: 10.1016/j.tca.2021.179034_bib0011 article-title: A theoretical method for obtaining Padé type approximation to temperature integrals via the Stieltjes integral publication-title: J. Math. Chem. doi: 10.1007/s10910-017-0845-6 – volume: 264 year: 2020 ident: 10.1016/j.tca.2021.179034_bib0019 article-title: Determination of rate parameters of key N/H/O elementary reactions based on H2/O2/NOx combustion experiments publication-title: Fuel doi: 10.1016/j.fuel.2019.116720 – volume: 22 start-page: 178 year: 2001 ident: 10.1016/j.tca.2021.179034_bib0035 article-title: Modification of the integral isoconversional method to account for variation in the activation energy publication-title: J. Comput. Chem. doi: 10.1002/1096-987X(20010130)22:2<178::AID-JCC5>3.0.CO;2-# – volume: 90 start-page: 449 year: 2007 ident: 10.1016/j.tca.2021.179034_bib0006 article-title: A procedure to approximate the generalized temperature integral publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-006-7942-2 – volume: 96 start-page: 175 year: 2009 ident: 10.1016/j.tca.2021.179034_bib0008 article-title: New approximate formulae for the generalized temperature integral publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-008-9388-1 – volume: 9 start-page: 421 year: 2007 ident: 10.1016/j.tca.2021.179034_bib0005 article-title: Kinetic analysis of solid-state reactions: A new integral method for nonisothermal kinetics with the dependence of the preexponential factor on the temperature (A= A0Tn) publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2007.03.022 – volume: 43 start-page: 637 year: 2008 ident: 10.1016/j.tca.2021.179034_bib0001 article-title: Dependence of the frequency factor on the temperature: a new integral method of nonisothermal kinetic analysis publication-title: J. Math. Chem. doi: 10.1007/s10910-006-9215-5 – volume: Vol. 55 year: 1965 ident: 10.1016/j.tca.2021.179034_bib0020 – volume: 43 start-page: 6632 year: 2018 ident: 10.1016/j.tca.2021.179034_bib0031 article-title: Analysis of hydrogen desorption from linear heating experiments: accuracy of activation energy determinations publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.02.064 – volume: 11 start-page: 4115 year: 2020 ident: 10.1016/j.tca.2021.179034_bib0025 article-title: Solid-state polymerization of a novel cyanate ester based on 4-tert-butylcalix [6]arene publication-title: Polym. Chem. doi: 10.1039/D0PY00554A – volume: 300 start-page: 83 year: 1997 ident: 10.1016/j.tca.2021.179034_bib0015 article-title: The ‘temperature integral’—its use and abuse publication-title: Thermochim. Acta doi: 10.1016/S0040-6031(97)00046-4 – volume: 91 start-page: 885 year: 2008 ident: 10.1016/j.tca.2021.179034_bib0027 article-title: New rational fraction approximating formulas for the temperature integral publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-007-8279-1 – volume: 68 start-page: 149 year: 1996 ident: 10.1016/j.tca.2021.179034_bib0016 article-title: A glossary of terms used in chemical kinetics, including reaction dynamics (IUPAC Recommendations 1996) publication-title: Pure Appl. Chem. doi: 10.1351/pac199668010149 – volume: 10 start-page: 447 year: 1976 ident: 10.1016/j.tca.2021.179034_bib0002 article-title: Algorism for the solution of the exponential integral in non-isothermal kinetics at linear heating publication-title: J. Therm. Anal. Calorim. doi: 10.1007/BF01909897 – volume: 6 start-page: 22331 year: 2016 ident: 10.1016/j.tca.2021.179034_bib0032 article-title: Graphene oxide/vinyl ester resin nanocomposite: the effect of graphene oxide, curing kinetics, modeling, mechanical properties and thermal stability publication-title: RSC Adv. doi: 10.1039/C5RA23731A – volume: Vol. 20 year: 2014 ident: 10.1016/j.tca.2021.179034_bib0018 – volume: 81 start-page: 347 year: 2005 ident: 10.1016/j.tca.2021.179034_bib0003 article-title: Approximate formulae for calculation of the integral int T^m exp (-E/RT) dT publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-005-0790-7 – volume: 82 start-page: 671 year: 2005 ident: 10.1016/j.tca.2021.179034_bib0017 article-title: Jiménez Dependence of the preexponential factor on temperature publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-005-0948-3 – volume: 36 start-page: 392 year: 2015 ident: 10.1016/j.tca.2021.179034_bib0037 article-title: An incremental isoconversional method for kinetic analysis based on the orthogonal distance regression publication-title: J. Comput. Chem. doi: 10.1002/jcc.23813 |
| SSID | ssj0001280 |
| Score | 2.4390404 |
| Snippet | •The general temperature integral can be expressed by several special functions.•The special function models are more accurate than the numerical integration... The non-isothermal analysis of reactions with a constant heating rate involves a temperature integral. This integral is popularized as the Arrhenius integral,... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 179034 |
| SubjectTerms | activation energy arithmetics Arrhenius integral equations General temperature integral Special functions temperature Thermal analysis |
| Title | Representation and evaluation of the Arrhenius and general temperature integrals by special functions |
| URI | https://dx.doi.org/10.1016/j.tca.2021.179034 https://www.proquest.com/docview/2636640072 |
| Volume | 705 |
| WOSCitedRecordID | wos000704400600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-762X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001280 issn: 0040-6031 databaseCode: AIEXJ dateStart: 19950102 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3ba9swFIfFlg62l7Era3dBgz2tuMiKHFmPoXRsY5QxOsibkGVpTeicYiej3V-_I-viNKNlfdiLCY4thD_5nCP5nJ8QekeNLZW2KjMFMRkrlMgU-N2MMgPegenKqF5d_ws_Pi5nM_E17OLY9dsJ8KYpLy7E-X9FDecAtiudvQXu1CicgN8AHY6AHY7_BP5bn9saSop8qvEg6R1TAqZte2qa-dorNP_w2tP7TqcqiCxHHYmzzgWond-lft95wWGFb5FGWvtzqU_nTnnAiXMkSz91atlzX0cDpvW32lxjoHkottuwm65IgAR7HewmJ8WG5XNKX35Z8i-j7NcHFgcr7YSeaH4wXHtVAHvLMaV0wZiJtpDQhHRNSN_EXbRDeSHKEdqZfjqafU4-GLwuifmSrt_xe3af2bfVj-siki3f3AccJ4_QwzBTwFNP-DG6Y5on6P5h3KDvKTJXSWMgiQfSeGkxkMaJdP9_II03SONEGleXOJDGifQz9P3D0cnhxyzsmpFpCMVXWTkZc2t4JZh2wkbEksoVJ1Oe05oWteF1wbiolGUw2bWKak7hRWY2NzWreK7Gz9GoWTbmBcIWnk5eGFpDWMpg3iwMJaIqjVA1BMIl2UUkPjmpg6S829nkTF5LbBe9T7ecez2Vmy5mEYcMAaEP9CQMrZtuexvRSUDivoCpxizXnaST8WTCnFr-3m368RI9GN6KV2i0atfmNbqnf63mXfsmjL0_GN2OeA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representation+and+evaluation+of+the+Arrhenius+and+general+temperature+integrals+by+special+functions&rft.jtitle=Thermochimica+acta&rft.au=Aghili%2C+Alireza&rft.date=2021-11-01&rft.issn=0040-6031&rft.volume=705&rft.spage=179034&rft_id=info:doi/10.1016%2Fj.tca.2021.179034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_tca_2021_179034 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0040-6031&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0040-6031&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0040-6031&client=summon |