On the number of L-shapes in embedding dimension four numerical semigroups

Minimum distance diagrams, also known as L-shapes, have been used to study some properties related to weighted Cayley digraphs of degree two and embedding dimension three numerical semigroups. In this particular case, it has been shown that these discrete structures have at most two related L-shapes...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete mathematics Ročník 338; číslo 12; s. 2168 - 2178
Hlavní autori: Aguiló-Gost, F., García-Sánchez, P.A., Llena, D.
Médium: Journal Article Publikácia
Jazyk:English
Vydavateľské údaje: Elsevier B.V 06.12.2015
Predmet:
ISSN:0012-365X, 1872-681X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Minimum distance diagrams, also known as L-shapes, have been used to study some properties related to weighted Cayley digraphs of degree two and embedding dimension three numerical semigroups. In this particular case, it has been shown that these discrete structures have at most two related L-shapes. These diagrams are proved to be a good tool for studying factorizations and the catenary degree for semigroups and diameter and distance between vertices for digraphs. This maximum number of L-shapes has not been proved to be kept when increasing the degree of digraphs or the embedding dimension of semigroups. In this work we give a family of embedding dimension four numerical semigroups Sn, for odd n≥5, such that the number of related L-shapes is n+32. This family has her analogue to weighted Cayley digraphs of degree three. Therefore, the number of L-shapes related to numerical semigroups can be as large as wanted when the embedding dimension is at least four. The same is true for weighted Cayley digraphs of degree at least three. This fact has several implications on the combinatorics of factorizations for numerical semigroups and minimum paths between vertices for weighted digraphs.
AbstractList Minimum distance diagrams, also known as L-shapes, have been used to study some properties related to weighted Cayley digraphs of degree two and embedding dimension three numerical semigroups. In this particular case, it has been shown that these discrete structures have at most two related L-shapes. These diagrams are proved to be a good tool for studying factorizations and the catenary degree for semigroups and diameter and distance between vertices for digraphs. This maximum number of L-shapes has not been proved to be kept when increasing the degree of digraphs or the embedding dimension of semigroups. In this work we give a family of embedding dimension four numerical semigroups , for odd , such that the number of related L-shapes is . This family has her analogue to weighted Cayley digraphs of degree three. Therefore, the number of L-shapes related to numerical semigroups can be as large as wanted when the embedding dimension is at least four. The same is true for weighted Cayley digraphs of degree at least three. This fact has several implications on the combinatorics of factorizations for numerical semigroups and minimum paths between vertices for weighted digraphs.
Minimum distance diagrams, also known as L-shapes, have been used to study some properties related to weighted Cayley digraphs of degree two and embedding dimension three numerical semigroups. In this particular case, it has been shown that these discrete structures have at most two related L-shapes. These diagrams are proved to be a good tool for studying factorizations and the catenary degree for semigroups and diameter and distance between vertices for digraphs. This maximum number of L-shapes has not been proved to be kept when increasing the degree of digraphs or the embedding dimension of semigroups. In this work we give a family of embedding dimension four numerical semigroups Sn, for odd n≥5, such that the number of related L-shapes is n+32. This family has her analogue to weighted Cayley digraphs of degree three. Therefore, the number of L-shapes related to numerical semigroups can be as large as wanted when the embedding dimension is at least four. The same is true for weighted Cayley digraphs of degree at least three. This fact has several implications on the combinatorics of factorizations for numerical semigroups and minimum paths between vertices for weighted digraphs.
Minimum distance diagrams, also known as L-shapes, have been used to study some properties related to weighted Cayley digraphs of degree two and embedding dimension three numerical semigroups. In this particular case, it has been shown that these discrete structures have at most two related L-shapes. These diagrams are proved to be a good tool for studying factorizations and the catenary degree for semigroups and diameter and distance between vertices for digraphs.; This maximum number of L-shapes has not been proved to be kept when increasing the degree of digraphs or the embedding dimension of semigroups. In this work we give a family of embedding dimension four numerical semigroups S-n, for odd n >= 5, such that the number of related L-shapes is n+3/2. This family has her analogue to weighted Cayley digraphs of degree three.; Therefore, the number of L-shapes related to numerical semigroups can be as large as wanted when the embedding dimension is at least four. The same is true for weighted Cayley digraphs of degree at least three. This fact has several implications on the combinatorics of factorizations for numerical semigroups and minimum paths between vertices for weighted digraphs. (C) 2015 Elsevier B.V. All rights reserved. Peer Reviewed
Author Aguiló-Gost, F.
García-Sánchez, P.A.
Llena, D.
Author_xml – sequence: 1
  givenname: F.
  orcidid: 0000-0003-1572-8486
  surname: Aguiló-Gost
  fullname: Aguiló-Gost, F.
  email: matfag@ma4.upc.edu
  organization: Departament de Matemàtica Aplicada IV, Univ Politècnica de Catalunya, Barcelona, Spain
– sequence: 2
  givenname: P.A.
  orcidid: 0000-0003-2330-9871
  surname: García-Sánchez
  fullname: García-Sánchez, P.A.
  email: pedro@ugr.es
  organization: Departamento de Álgebra, Universidad de Granada, Granada, Spain
– sequence: 3
  givenname: D.
  surname: Llena
  fullname: Llena, D.
  email: dllena@ual.es
  organization: Departamento de Matemáticas, Universidad de Almería, Almería, Spain
BookMark eNp9kE1LBDEMhosouK7-AU89epm16Xx1wIuInyx4UfBWOm2qXXbatZ0R_Pd2WMGbkBAS8rwk7wk59MEjIefAVsCgudysjEt6xRnUK5YDugOyANHyohHwdkgWjAEvyqZ-OyYnKW1Y7ptSLMjTs6fjB1I_DT1GGixdF-lD7TBR5ynmoTHOv1PjBvTJBU9tmOK8jtFptaUJB_cew7RLp-TIqm3Cs9-6JK93ty83D8X6-f7x5npd6JI3YyGgskYI1XZ9g4q3pq6V5gx1U4KteGf7irWV0rYXwFHkYQdlb2vTWAXKYrkksNfVadIyosao1SiDcn_NnJy1XPKuqnibmYs9s4vhc8I0yiH7hdut8himJKEF0bUl1PMq_5WPIaWIVu6iG1T8lsDkbLbcyNlsOZstWQ7oMnS1hzA__uUwyqQdeo3G5ZtGaYL7D_8BMWOKfQ
Cites_doi 10.1016/0012-365X(94)00239-F
10.1109/TC.1987.1676963
10.37236/410
10.1016/j.endm.2014.08.025
10.1016/j.disc.2008.02.047
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
Universitat Politècnica de Catalunya. Departament de Matemàtiques
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament de Matemàtiques
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
Copyright 2015 Elsevier B.V.
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/es
Copyright_xml – notice: 2015 Elsevier B.V.
– notice: info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
XX2
DOI 10.1016/j.disc.2015.05.019
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Recercat
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-681X
EndPage 2178
ExternalDocumentID oai_recercat_cat_2072_294427
10_1016_j_disc_2015_05_019
S0012365X15001922
GroupedDBID --K
--M
-DZ
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6I.
6OB
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AASFE
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADIYS
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
WH7
XPP
ZMT
~G-
29G
41~
5VS
6TJ
9DU
AAEDT
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABUFD
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGHFR
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FA8
FGOYB
G-2
HZ~
MVM
R2-
RNS
SEW
VH1
WUQ
XOL
ZCG
ZY4
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
XX2
ID FETCH-LOGICAL-c326t-814fd88a79b6ea27d55ac20ec631f429fb4074acfb812e831f913bf5d6fa1afe3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000359955700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0012-365X
IngestDate Fri Nov 07 13:49:44 EST 2025
Sun Sep 28 06:55:47 EDT 2025
Sat Nov 29 06:17:49 EST 2025
Fri Feb 23 02:17:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Numerical semigroup
L-shape
Weighted Cayley digraph
Factorization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c326t-814fd88a79b6ea27d55ac20ec631f429fb4074acfb812e831f913bf5d6fa1afe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2330-9871
0000-0003-1572-8486
OpenAccessLink https://recercat.cat/handle/2072/294427
PQID 1718973157
PQPubID 23500
PageCount 11
ParticipantIDs csuc_recercat_oai_recercat_cat_2072_294427
proquest_miscellaneous_1718973157
crossref_primary_10_1016_j_disc_2015_05_019
elsevier_sciencedirect_doi_10_1016_j_disc_2015_05_019
PublicationCentury 2000
PublicationDate 2015-12-06
PublicationDateYYYYMMDD 2015-12-06
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-06
  day: 06
PublicationDecade 2010
PublicationTitle Discrete mathematics
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rödseth (br000035) 1996; 148
Rosales, García-Sánchez (br000040) 2009; vol. 20
Sabariego, Santos (br000045) 2009; 309
Aguiló-Gost, García-Sánchez (br000005) 2010; 17
M. Delgado, P.A. García-Sánchez, J. Morais, “NumericalSgps”, A GAP package for numerical semigroups. Available via
Fiol, Yebra, Alegre, Valero (br000025) 1987; C-36
The GAP Group, GAP—Groups, Algorithms, and Programming, Version 4.7.5; 2014
Bresinsky (br000015) 1975; 47
Aguiló-Gost, García-Sánchez, Llena (br000010) 2014; 46
.
Bresinsky (10.1016/j.disc.2015.05.019_br000015) 1975; 47
Sabariego (10.1016/j.disc.2015.05.019_br000045) 2009; 309
10.1016/j.disc.2015.05.019_br000020
Aguiló-Gost (10.1016/j.disc.2015.05.019_br000010) 2014; 46
10.1016/j.disc.2015.05.019_br000030
Rosales (10.1016/j.disc.2015.05.019_br000040) 2009; vol. 20
Fiol (10.1016/j.disc.2015.05.019_br000025) 1987; C-36
Aguiló-Gost (10.1016/j.disc.2015.05.019_br000005) 2010; 17
Rödseth (10.1016/j.disc.2015.05.019_br000035) 1996; 148
References_xml – reference: M. Delgado, P.A. García-Sánchez, J. Morais, “NumericalSgps”, A GAP package for numerical semigroups. Available via
– volume: 309
  start-page: 1672
  year: 2009
  end-page: 1684
  ident: br000045
  article-title: Triple-loop networks with arbitrarily many minimum distance diagrams
  publication-title: Discrete Math.
– volume: 46
  start-page: 185
  year: 2014
  end-page: 192
  ident: br000010
  article-title: An algorithm to compute the primitive elements of an embedding dimension three numerical semigroups
  publication-title: Electron. Notes Discrete Math.
– reference: The GAP Group, GAP—Groups, Algorithms, and Programming, Version 4.7.5; 2014,
– volume: 148
  start-page: 161
  year: 1996
  end-page: 173
  ident: br000035
  article-title: Weighted multi-connected loop networks
  publication-title: Discrete Math.
– volume: C-36
  start-page: 702
  year: 1987
  end-page: 713
  ident: br000025
  article-title: A discrete optimization problem in local networks and data alignment
  publication-title: IEEE Trans. Comput.
– volume: 17
  year: 2010
  ident: br000005
  article-title: Factoring in embedding dimension three numerical semigroups
  publication-title: Electron. J. Combin.
– volume: 47
  start-page: 329
  year: 1975
  end-page: 332
  ident: br000015
  article-title: On prime ideals with generic zero
  publication-title: Proc. Amer. Math. Soc.
– volume: vol. 20
  year: 2009
  ident: br000040
  article-title: Numerical semigroups
  publication-title: Developments in Mathematics
– reference: .
– volume: 148
  start-page: 161
  year: 1996
  ident: 10.1016/j.disc.2015.05.019_br000035
  article-title: Weighted multi-connected loop networks
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(94)00239-F
– volume: C-36
  start-page: 702
  year: 1987
  ident: 10.1016/j.disc.2015.05.019_br000025
  article-title: A discrete optimization problem in local networks and data alignment
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.1987.1676963
– volume: vol. 20
  year: 2009
  ident: 10.1016/j.disc.2015.05.019_br000040
  article-title: Numerical semigroups
– volume: 17
  issue: 1
  year: 2010
  ident: 10.1016/j.disc.2015.05.019_br000005
  article-title: Factoring in embedding dimension three numerical semigroups
  publication-title: Electron. J. Combin.
  doi: 10.37236/410
– volume: 47
  start-page: 329
  year: 1975
  ident: 10.1016/j.disc.2015.05.019_br000015
  article-title: On prime ideals with generic zero xi=tni
  publication-title: Proc. Amer. Math. Soc.
– volume: 46
  start-page: 185
  year: 2014
  ident: 10.1016/j.disc.2015.05.019_br000010
  article-title: An algorithm to compute the primitive elements of an embedding dimension three numerical semigroups
  publication-title: Electron. Notes Discrete Math.
  doi: 10.1016/j.endm.2014.08.025
– ident: 10.1016/j.disc.2015.05.019_br000020
– volume: 309
  start-page: 1672
  issue: 6
  year: 2009
  ident: 10.1016/j.disc.2015.05.019_br000045
  article-title: Triple-loop networks with arbitrarily many minimum distance diagrams
  publication-title: Discrete Math.
  doi: 10.1016/j.disc.2008.02.047
– ident: 10.1016/j.disc.2015.05.019_br000030
SSID ssj0001638
Score 2.066094
Snippet Minimum distance diagrams, also known as L-shapes, have been used to study some properties related to weighted Cayley digraphs of degree two and embedding...
SourceID csuc
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2168
SubjectTerms 05 Combinatorics
05C Graph theory
11 Number theory
11D Diophantine equations
Analogue
Catenaries
Classificació AMS
Combinatorial analysis
Combinatòria
Factorization
Grafs, Teoria de
Graph theory
Group theory
L-shape
LOOP NETWORKS
Matemàtica discreta
Matemàtiques i estadística
Mathematical models
Numerical semigroup
Teoria de grafs
Weighted Cayley digraph
Àrees temàtiques de la UPC
Title On the number of L-shapes in embedding dimension four numerical semigroups
URI https://dx.doi.org/10.1016/j.disc.2015.05.019
https://www.proquest.com/docview/1718973157
https://recercat.cat/handle/2072/294427
Volume 338
WOSCitedRecordID wos000359955700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-681X
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0001638
  issn: 0012-365X
  databaseCode: AIEXJ
  dateStart: 19950120
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLag4wEeEFfRcZGREA9UQc3FcfJYQTeYSotEh_JmOYnNMrG0axq0n885sZO0E0LjASmNEiuKVZ8v53y2z4WQN77S3jhLuZNzFTiBTF1HumoMV6ANmWSBSfb8fcbn8yhJ4q82XLFqygnwsoyuruL1fxU1tIGwMXT2H8TdvRQa4BqEDmcQO5xvJPiFcVw0pT6aLQCnOpPrxvFqpKAxb-JYckzrXxlHw3qDjyuTLaRSF0UT61HtEtePBegXINijiy7Pa8fGJz_q4ufKObbxI52v8DHWKZLONwDWmV2o7pdOZ2DuZO9ybBceXNY4cYS7yhTzHYYs2VWmvh_tosbb042mgI61szAXiv6ow81ywvl7DEtG3ztmUqvGvcVqd-nnC3F0OpuJ5TRZvl1fOlhLDPfcbWGV2-TA4ywGXXcw-TxNTjoLjRzUWGjzB2wwlfH7u97tHmEZZFWd7fGWaxa8oSXLB-S-nU_QicHBQ3JLlY_IvS-9kB6Tk0VJ4ZYaRNCVpi0iaFHSDhG0QwRFRNAOEbRHxBNyejRdfvjk2BIaTga8fIsLvDqPIsnjNFTS4zljmJNTZaHvaqAiOoUJfSAznQLRUxE0xq6fapaHWrpSK_8pGZSrUj0jlI-DwGvSKUZhoLRKNTDTwJcBTjLyMBuSUTtOYm0ypYjWhfBc4KgKHFUxhsONh-QdDqUAs642mdwKTHPe3eAP-vKEF0OnfEhYO-DCEkND-ARg5q-dvG6lI0Br4laYLNWqroQLlAyLtjF-eINnnpO7_Qfwggy2m1q9JHeyX9ui2ryy6PoN_QeOiw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+number+of+L-shapes+in+embedding+dimension+four+numerical+semigroups&rft.jtitle=Discrete+mathematics&rft.au=Aguilo-Gost%2C+F&rft.au=Garcia-Sanchez%2C+P+A&rft.au=Llena%2C+D&rft.date=2015-12-06&rft.issn=0012-365X&rft.volume=338&rft.issue=12&rft.spage=2168&rft.epage=2178&rft_id=info:doi/10.1016%2Fj.disc.2015.05.019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-365X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-365X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-365X&client=summon