All-pairs suffix/prefix in optimal time using Aho-Corasick space

The all-pairs suffix/prefix (APSP) problem is a classic problem in computer science with many applications in bioinformatics. Given a set {S1,…,Sk} of k strings of total length n, we are asked to find, for each string Si, i∈[1,k], its longest suffix that is a prefix of string Sj, for all j≠i, j∈[1,k...

Full description

Saved in:
Bibliographic Details
Published in:Information processing letters Vol. 178; p. 106275
Main Authors: Loukides, Grigorios, Pissis, Solon P.
Format: Journal Article
Language:English
Published: Elsevier B.V 01.11.2022
Elsevier
Subjects:
ISSN:0020-0190, 1872-6119
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The all-pairs suffix/prefix (APSP) problem is a classic problem in computer science with many applications in bioinformatics. Given a set {S1,…,Sk} of k strings of total length n, we are asked to find, for each string Si, i∈[1,k], its longest suffix that is a prefix of string Sj, for all j≠i, j∈[1,k]. Several algorithms running in the optimal O(n+k2) time for solving APSP are known. All of these algorithms are based on suffix sorting and thus require space Ω(n) in any case. We consider the parameterized version of the APSP problem, denoted by ℓ-APSP, in which we are asked to output only the pairs whose suffix/prefix overlap is of length at least ℓ. We give an algorithm for solving ℓ-APSP that runs in the optimal O(n+|OUTPUTℓ|) time using O(n) space, where OUTPUTℓ is the set of output pairs. Our algorithm is thus optimal for the APSP problem as well by setting ℓ=0. Notably, our algorithm is fundamentally different from all optimal algorithms solving the APSP problem: it does not rely on sorting the suffixes of all input strings but on a novel traversal of the Aho-Corasick machine, and it thus requires space linear in the size of the machine. •All-pairs suffix/prefix of length at least ℓ in optimal time.•All-pairs suffix/prefix in optimal time without suffix sorting.•All-pairs suffix/prefix in optimal time using Aho-Corasick space.
AbstractList The all-pairs suffix/prefix (APSP) problem is a classic problem in computer science with many applications in bioinformatics. Given a set {S1,…,Sk} of k strings of total length n, we are asked to find, for each string Si, i∈[1,k], its longest suffix that is a prefix of string Sj, for all j≠i, j∈[1,k]. Several algorithms running in the optimal O(n+k2) time for solving APSP are known. All of these algorithms are based on suffix sorting and thus require space Ω(n) in any case. We consider the parameterized version of the APSP problem, denoted by ℓ-APSP, in which we are asked to output only the pairs whose suffix/prefix overlap is of length at least ℓ. We give an algorithm for solving ℓ-APSP that runs in the optimal O(n+|OUTPUTℓ|) time using O(n) space, where OUTPUTℓ is the set of output pairs. Our algorithm is thus optimal for the APSP problem as well by setting ℓ=0. Notably, our algorithm is fundamentally different from all optimal algorithms solving the APSP problem: it does not rely on sorting the suffixes of all input strings but on a novel traversal of the Aho-Corasick machine, and it thus requires space linear in the size of the machine. •All-pairs suffix/prefix of length at least ℓ in optimal time.•All-pairs suffix/prefix in optimal time without suffix sorting.•All-pairs suffix/prefix in optimal time using Aho-Corasick space.
The all-pairs suffix/prefix (APSP) problem is a classic problem in computer science with many applications in bioinformatics. Given a set {S 1 ,. .. , S k } of k strings of total length n, we are asked to find, for each string S i , i ∈ [1, k], its longest suffix that is a prefix of string S j , for all j = i, j ∈ [1, k]. Several algorithms running in the optimal O(n + k 2) time for solving APSP are known. All of these algorithms are based on suffix sorting and thus require space (n) in any case. We consider the parameterized version of the APSP problem, denoted by-APSP, in which we are asked to output only the pairs whose suffix/prefix overlap is of length at least. We give an algorithm for solving-APSP that runs in the optimal O(n + |OUTPUT |) time using O(n) space, where OUTPUT is the set of output pairs. Our algorithm is thus optimal for the APSP problem as well by setting = 0. Notably, our algorithm is fundamentally different from all optimal algorithms solving the APSP problem: it does not rely on sorting the suffixes of all input strings but on a novel traversal of the Aho-Corasick machine, and it thus requires space linear in the size of the machine.
ArticleNumber 106275
Author Pissis, Solon P.
Loukides, Grigorios
Author_xml – sequence: 1
  givenname: Grigorios
  surname: Loukides
  fullname: Loukides, Grigorios
  email: grigorios.loukides@kcl.ac.uk
  organization: Department of Informatics, King's College London, London, UK
– sequence: 2
  givenname: Solon P.
  orcidid: 0000-0002-1445-1932
  surname: Pissis
  fullname: Pissis, Solon P.
  email: solon.pissis@cwi.nl
  organization: CWI, Amsterdam, the Netherlands
BackLink https://inria.hal.science/hal-03832860$$DView record in HAL
BookMark eNp9UEFOwzAQtFCRaAsP4OYrh7S7TmLH4kJUUYpUiQucLcdxqEtIIrut4Pe4CuLIZUezmlntzIxMur6zhNwiLBCQL_cLN7QLBoxFzpnIL8gUC8ESjignZArAIAGUcEVmIewBgGepmJKHsm2TQTsfaDg2jftaDt5GoK6j_XBwn7qlcVp6DK57p-WuT1a918GZDxoGbew1uWx0G-zNL87J2_rxdbVJti9Pz6tym5iU8UMiZF7wCmQlNdNYCSG1aFDLtOaYGYFNhrmEyuZQYBap5AWvteVVrTNTmSqdk7vx7k63avDxMf-teu3Uptyq8w7SImUFhxNGLY5a4_sQYp4_A4I616X2KtalznWpsa7ouR89NoY4OetVMM52xtbOW3NQde_-cf8AkoBy9g
Cites_doi 10.1016/j.ipl.2005.11.019
10.1186/1471-2105-13-82
10.1137/0222058
10.1016/0020-0190(92)90176-V
10.1016/j.ipl.2009.10.015
10.1145/360825.360855
10.1016/j.ipl.2019.105862
10.1007/BF01840391
10.1016/j.tcs.2017.07.013
10.1016/j.jda.2016.04.002
ContentType Journal Article
Copyright 2022 The Authors
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 The Authors
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 6I.
AAFTH
AAYXX
CITATION
1XC
VOOES
DOI 10.1016/j.ipl.2022.106275
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-6119
ExternalDocumentID oai:HAL:hal-03832860v1
10_1016_j_ipl_2022_106275
S0020019022000321
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFSI
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SSV
SSZ
T5K
TN5
UQL
WH7
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
1XC
VOOES
ID FETCH-LOGICAL-c326t-79586b09b9a2a1b779a7f1a93d614c71f41590be5081471f9686dae6bda4cbcb3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000860690400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0020-0190
IngestDate Tue Oct 14 20:16:52 EDT 2025
Sat Nov 29 07:28:19 EST 2025
Fri Feb 23 02:39:44 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords String algorithms
Data structures
Failure transition tree
Algorithms
Aho-Corasick machine
Language English
License This is an open access article under the CC BY license.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c326t-79586b09b9a2a1b779a7f1a93d614c71f41590be5081471f9686dae6bda4cbcb3
ORCID 0000-0002-1445-1932
OpenAccessLink https://inria.hal.science/hal-03832860
ParticipantIDs hal_primary_oai_HAL_hal_03832860v1
crossref_primary_10_1016_j_ipl_2022_106275
elsevier_sciencedirect_doi_10_1016_j_ipl_2022_106275
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
2022-11
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Information processing letters
PublicationYear 2022
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Dori, Landau (br0040) 2006; 98
Khan (br0080) 2021
Park, Park, Cazaux, Park, Rivals (br0130) 2021
Cazaux, Rivals (br0020) 2020; 155
Gusfield (br0060) 1997
Rachid, Malluhi (br0140) 2015; 2015
Crochemore, Hancart, Lecroq (br0030) 2007
Gonnella, Kurtz (br0050) 2012; 13
Lim, Park (br0090) 2017; 698
Gusfield, Landau, Schieber (br0070) 1992; 41
Ohlebusch, Gog (br0120) 2010; 110
Tustumi, Gog, Telles, Louza (br0150) 2016; 37
Ukkonen (br0160) 1990; 5
Manber, Myers (br0110) 1993; 22
Louza, Gog, Zanotto, Araujo, Telles (br0100) 2016
Weiner (br0170) 1973
Aho, Corasick (br0010) 1975; 18
Gusfield (10.1016/j.ipl.2022.106275_br0060) 1997
Gusfield (10.1016/j.ipl.2022.106275_br0070) 1992; 41
Manber (10.1016/j.ipl.2022.106275_br0110) 1993; 22
Aho (10.1016/j.ipl.2022.106275_br0010) 1975; 18
Gonnella (10.1016/j.ipl.2022.106275_br0050) 2012; 13
Park (10.1016/j.ipl.2022.106275_br0130) 2021
Rachid (10.1016/j.ipl.2022.106275_br0140) 2015; 2015
Ukkonen (10.1016/j.ipl.2022.106275_br0160) 1990; 5
Louza (10.1016/j.ipl.2022.106275_br0100) 2016
Tustumi (10.1016/j.ipl.2022.106275_br0150) 2016; 37
Ohlebusch (10.1016/j.ipl.2022.106275_br0120) 2010; 110
Cazaux (10.1016/j.ipl.2022.106275_br0020) 2020; 155
Weiner (10.1016/j.ipl.2022.106275_br0170) 1973
Lim (10.1016/j.ipl.2022.106275_br0090) 2017; 698
Crochemore (10.1016/j.ipl.2022.106275_br0030) 2007
Dori (10.1016/j.ipl.2022.106275_br0040) 2006; 98
Khan (10.1016/j.ipl.2022.106275_br0080) 2021
References_xml – volume: 2015
  year: 2015
  ident: br0140
  article-title: A practical and scalable tool to find overlaps between sequences
  publication-title: BioMed Res. Int.
– year: 2021
  ident: br0130
  article-title: A linear time algorithm for constructing hierarchical overlap graphs
  publication-title: 32nd Annual Symposium on Combinatorial Pattern Matching
– volume: 98
  start-page: 66
  year: 2006
  end-page: 72
  ident: br0040
  article-title: Construction of Aho Corasick automaton in linear time for integer alphabets
  publication-title: Inf. Process. Lett.
– volume: 22
  start-page: 935
  year: 1993
  end-page: 948
  ident: br0110
  article-title: Suffix arrays: a new method for on-line string searches
  publication-title: SIAM J. Comput.
– volume: 5
  start-page: 313
  year: 1990
  end-page: 323
  ident: br0160
  article-title: A linear-time algorithm for finding approximate shortest common superstrings
  publication-title: Algorithmica
– year: 2007
  ident: br0030
  article-title: Algorithms on Strings
– volume: 41
  start-page: 181
  year: 1992
  end-page: 185
  ident: br0070
  article-title: An efficient algorithm for the all pairs suffix-prefix problem
  publication-title: Inf. Process. Lett.
– volume: 18
  start-page: 333
  year: 1975
  end-page: 340
  ident: br0010
  article-title: Efficient string matching: an aid to bibliographic search
  publication-title: Commun. ACM
– volume: 37
  start-page: 34
  year: 2016
  end-page: 43
  ident: br0150
  article-title: An improved algorithm for the all-pairs suffix-prefix problem
  publication-title: J. Discret. Algorithms
– year: 1997
  ident: br0060
  article-title: Algorithms on Strings, Trees, and Sequences - Computer Science and Computational Biology
– start-page: 122
  year: 2016
  end-page: 132
  ident: br0100
  article-title: Parallel computation for the all-pairs suffix-prefix problem
  publication-title: String Processing and Information Retrieval - Proceedings of the 23rd International Symposium
– volume: 698
  start-page: 14
  year: 2017
  end-page: 24
  ident: br0090
  article-title: A fast algorithm for the all-pairs suffix-prefix problem
  publication-title: Theor. Comput. Sci.
– start-page: 1
  year: 1973
  end-page: 11
  ident: br0170
  article-title: Linear pattern matching algorithms
  publication-title: 14th Annual Symposium on Switching and Automata Theory
– volume: 13
  start-page: 82
  year: 2012
  ident: br0050
  article-title: Readjoiner: a fast and memory efficient string graph-based sequence assembler
  publication-title: BMC Bioinform.
– volume: 110
  start-page: 123
  year: 2010
  end-page: 128
  ident: br0120
  article-title: Efficient algorithms for the all-pairs suffix-prefix problem and the all-pairs substring-prefix problem
  publication-title: Inf. Process. Lett.
– year: 2021
  ident: br0080
  article-title: Optimal construction of hierarchical overlap graphs
  publication-title: 32nd Annual Symposium on Combinatorial Pattern Matching
– volume: 155
  year: 2020
  ident: br0020
  article-title: Hierarchical overlap graph
  publication-title: Inf. Process. Lett.
– year: 2021
  ident: 10.1016/j.ipl.2022.106275_br0130
  article-title: A linear time algorithm for constructing hierarchical overlap graphs
– volume: 98
  start-page: 66
  year: 2006
  ident: 10.1016/j.ipl.2022.106275_br0040
  article-title: Construction of Aho Corasick automaton in linear time for integer alphabets
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2005.11.019
– volume: 13
  start-page: 82
  year: 2012
  ident: 10.1016/j.ipl.2022.106275_br0050
  article-title: Readjoiner: a fast and memory efficient string graph-based sequence assembler
  publication-title: BMC Bioinform.
  doi: 10.1186/1471-2105-13-82
– volume: 22
  start-page: 935
  year: 1993
  ident: 10.1016/j.ipl.2022.106275_br0110
  article-title: Suffix arrays: a new method for on-line string searches
  publication-title: SIAM J. Comput.
  doi: 10.1137/0222058
– year: 2007
  ident: 10.1016/j.ipl.2022.106275_br0030
– year: 2021
  ident: 10.1016/j.ipl.2022.106275_br0080
  article-title: Optimal construction of hierarchical overlap graphs
– start-page: 122
  year: 2016
  ident: 10.1016/j.ipl.2022.106275_br0100
  article-title: Parallel computation for the all-pairs suffix-prefix problem
– volume: 41
  start-page: 181
  year: 1992
  ident: 10.1016/j.ipl.2022.106275_br0070
  article-title: An efficient algorithm for the all pairs suffix-prefix problem
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(92)90176-V
– volume: 110
  start-page: 123
  year: 2010
  ident: 10.1016/j.ipl.2022.106275_br0120
  article-title: Efficient algorithms for the all-pairs suffix-prefix problem and the all-pairs substring-prefix problem
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2009.10.015
– volume: 18
  start-page: 333
  year: 1975
  ident: 10.1016/j.ipl.2022.106275_br0010
  article-title: Efficient string matching: an aid to bibliographic search
  publication-title: Commun. ACM
  doi: 10.1145/360825.360855
– volume: 155
  year: 2020
  ident: 10.1016/j.ipl.2022.106275_br0020
  article-title: Hierarchical overlap graph
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2019.105862
– volume: 5
  start-page: 313
  year: 1990
  ident: 10.1016/j.ipl.2022.106275_br0160
  article-title: A linear-time algorithm for finding approximate shortest common superstrings
  publication-title: Algorithmica
  doi: 10.1007/BF01840391
– volume: 698
  start-page: 14
  year: 2017
  ident: 10.1016/j.ipl.2022.106275_br0090
  article-title: A fast algorithm for the all-pairs suffix-prefix problem
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2017.07.013
– volume: 37
  start-page: 34
  year: 2016
  ident: 10.1016/j.ipl.2022.106275_br0150
  article-title: An improved algorithm for the all-pairs suffix-prefix problem
  publication-title: J. Discret. Algorithms
  doi: 10.1016/j.jda.2016.04.002
– year: 1997
  ident: 10.1016/j.ipl.2022.106275_br0060
– volume: 2015
  year: 2015
  ident: 10.1016/j.ipl.2022.106275_br0140
  article-title: A practical and scalable tool to find overlaps between sequences
  publication-title: BioMed Res. Int.
– start-page: 1
  year: 1973
  ident: 10.1016/j.ipl.2022.106275_br0170
  article-title: Linear pattern matching algorithms
SSID ssj0006437
Score 2.370456
Snippet The all-pairs suffix/prefix (APSP) problem is a classic problem in computer science with many applications in bioinformatics. Given a set {S1,…,Sk} of k...
The all-pairs suffix/prefix (APSP) problem is a classic problem in computer science with many applications in bioinformatics. Given a set {S 1 ,. .. , S k } of...
SourceID hal
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 106275
SubjectTerms Aho-Corasick machine
Algorithms
Computer Science
Data structures
Failure transition tree
String algorithms
Title All-pairs suffix/prefix in optimal time using Aho-Corasick space
URI https://dx.doi.org/10.1016/j.ipl.2022.106275
https://inria.hal.science/hal-03832860
Volume 178
WOSCitedRecordID wos000860690400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6119
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006437
  issn: 0020-0190
  databaseCode: AIEXJ
  dateStart: 19950113
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ja9wwFBZN0kMv6RqSbojQUwdPrPEi6VYT0qZhCIGmZW5GsmXGycQ2s4T5-X1arCw0pTn0IgZ5LIS-509PT29B6JOMqSpUpL80woK40N9cSVUQizRO1CjlwoRH_xrT01M2mfAzV6t9YcoJ0KZh6zXv_ivU0Adg69DZR8DtB4UO-A2gQwuwQ_tPwGezWdDpW5rBYlVV9VqX14VtsF5r00YLDHFlIkWu1GBl7ATZtA0OQRAArssB8EtxxznIhSsZKelsUIF-aWaigLw-Pm5Xl3VpGecbnPfbed36h2eArc1k8AOYFjh3eNvUAKdU4k0Nveu_9mKz9T09fdoSPI4AiUl7_EdutmaCi2Hd6Suf0Wh489-7ebDv7U_ea7B3SLvIYYhcD5HbITbQFrQcSG0r-340OfFbsb6VtD4-dt79tbZx8Ls3j4cUk41pb2I3Ksf5C7Ttzgo4sxi_RE9U8wo97-twYEfLr9EXDzm2kB9YwHHdYAc41oBjAzi-DTg2gL9BP78enR8eB64yRlCAur0MKE9YKkMuuRgJIinlglZE8KgEbaugpAK1jIdSgfZNQPuoeMrSUqhUliIuZCGjHbTZtI3aRRgIPCIJ42GSiFiVEgg5ShNexQkjijK5hz73y5J3NgFK_iAQeyjuFy53GpzVzHIQgr-9tg-L7IfXGc-Ps3Gu-8IIthyWhtfk7WMm8g49uxHg92hzOV-pD-hpcb2sF_OPTkx-A_OHbyw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=All-pairs+suffix%2Fprefix+in+optimal+time+using+Aho-Corasick+space&rft.jtitle=Information+processing+letters&rft.au=Loukides%2C+Grigorios&rft.au=Pissis%2C+Solon+P.&rft.date=2022-11-01&rft.issn=0020-0190&rft.volume=178&rft.spage=106275&rft_id=info:doi/10.1016%2Fj.ipl.2022.106275&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ipl_2022_106275
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-0190&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-0190&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-0190&client=summon