Linear Fuzzy Information-Granule-Based Fuzzy C-Means Algorithm for Clustering Time Series
This article aims to design a trend-oriented-granulation-based fuzzy <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>-means (FCM) algorithm that can cluster a group of time series at an abstract (granular) level. To achieve a better trend-o...
Saved in:
| Published in: | IEEE transactions on cybernetics Vol. 53; no. 12; pp. 7622 - 7634 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This article aims to design a trend-oriented-granulation-based fuzzy <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>-means (FCM) algorithm that can cluster a group of time series at an abstract (granular) level. To achieve a better trend-oriented granulation of a time series, <inline-formula> <tex-math notation="LaTeX">{l}_{1} </tex-math></inline-formula> trend filtering is firstly carried out to result in segments which are then optimized by the proposed segment merging algorithm. By constructing a linear fuzzy information granule (LFIG) on each segment, a granular time series which well reflects the linear trend characteristic of the original time series is produced. With the novel designed distance that can well measure the trend similarity of two LFIGs, the distance between two granular time series is calculated by the modified dynamic time warping (DTW) algorithm. Based on this distance, the LFIG-based FCM algorithm is developed for clustering time series. In this algorithm, cluster prototypes are iteratively updated by the specifically designed granule splitting and merging algorithm, which allows the lengths of prototypes to change in the process of iteration. This overcomes the serious drawback of the existing approaches, where the lengths of prototypes cannot be changed. Experimental studies demonstrate the superior performance of the proposed algorithm in clustering time series with different shapes or trends. |
|---|---|
| AbstractList | This article aims to design a trend-oriented-granulation-based fuzzy [Formula Omitted]-means (FCM) algorithm that can cluster a group of time series at an abstract (granular) level. To achieve a better trend-oriented granulation of a time series, [Formula Omitted] trend filtering is firstly carried out to result in segments which are then optimized by the proposed segment merging algorithm. By constructing a linear fuzzy information granule (LFIG) on each segment, a granular time series which well reflects the linear trend characteristic of the original time series is produced. With the novel designed distance that can well measure the trend similarity of two LFIGs, the distance between two granular time series is calculated by the modified dynamic time warping (DTW) algorithm. Based on this distance, the LFIG-based FCM algorithm is developed for clustering time series. In this algorithm, cluster prototypes are iteratively updated by the specifically designed granule splitting and merging algorithm, which allows the lengths of prototypes to change in the process of iteration. This overcomes the serious drawback of the existing approaches, where the lengths of prototypes cannot be changed. Experimental studies demonstrate the superior performance of the proposed algorithm in clustering time series with different shapes or trends. This article aims to design a trend-oriented-granulation-based fuzzy C -means (FCM) algorithm that can cluster a group of time series at an abstract (granular) level. To achieve a better trend-oriented granulation of a time series, l1 trend filtering is firstly carried out to result in segments which are then optimized by the proposed segment merging algorithm. By constructing a linear fuzzy information granule (LFIG) on each segment, a granular time series which well reflects the linear trend characteristic of the original time series is produced. With the novel designed distance that can well measure the trend similarity of two LFIGs, the distance between two granular time series is calculated by the modified dynamic time warping (DTW) algorithm. Based on this distance, the LFIG-based FCM algorithm is developed for clustering time series. In this algorithm, cluster prototypes are iteratively updated by the specifically designed granule splitting and merging algorithm, which allows the lengths of prototypes to change in the process of iteration. This overcomes the serious drawback of the existing approaches, where the lengths of prototypes cannot be changed. Experimental studies demonstrate the superior performance of the proposed algorithm in clustering time series with different shapes or trends.This article aims to design a trend-oriented-granulation-based fuzzy C -means (FCM) algorithm that can cluster a group of time series at an abstract (granular) level. To achieve a better trend-oriented granulation of a time series, l1 trend filtering is firstly carried out to result in segments which are then optimized by the proposed segment merging algorithm. By constructing a linear fuzzy information granule (LFIG) on each segment, a granular time series which well reflects the linear trend characteristic of the original time series is produced. With the novel designed distance that can well measure the trend similarity of two LFIGs, the distance between two granular time series is calculated by the modified dynamic time warping (DTW) algorithm. Based on this distance, the LFIG-based FCM algorithm is developed for clustering time series. In this algorithm, cluster prototypes are iteratively updated by the specifically designed granule splitting and merging algorithm, which allows the lengths of prototypes to change in the process of iteration. This overcomes the serious drawback of the existing approaches, where the lengths of prototypes cannot be changed. Experimental studies demonstrate the superior performance of the proposed algorithm in clustering time series with different shapes or trends. This article aims to design a trend-oriented-granulation-based fuzzy <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>-means (FCM) algorithm that can cluster a group of time series at an abstract (granular) level. To achieve a better trend-oriented granulation of a time series, <inline-formula> <tex-math notation="LaTeX">{l}_{1} </tex-math></inline-formula> trend filtering is firstly carried out to result in segments which are then optimized by the proposed segment merging algorithm. By constructing a linear fuzzy information granule (LFIG) on each segment, a granular time series which well reflects the linear trend characteristic of the original time series is produced. With the novel designed distance that can well measure the trend similarity of two LFIGs, the distance between two granular time series is calculated by the modified dynamic time warping (DTW) algorithm. Based on this distance, the LFIG-based FCM algorithm is developed for clustering time series. In this algorithm, cluster prototypes are iteratively updated by the specifically designed granule splitting and merging algorithm, which allows the lengths of prototypes to change in the process of iteration. This overcomes the serious drawback of the existing approaches, where the lengths of prototypes cannot be changed. Experimental studies demonstrate the superior performance of the proposed algorithm in clustering time series with different shapes or trends. |
| Author | Jiang, Shurong Pedrycz, Witold Yang, Huilin Hao, Yadong Yu, Fusheng Yang, Zonglin |
| Author_xml | – sequence: 1 givenname: Zonglin surname: Yang fullname: Yang, Zonglin email: zonglinyang@mail.bnu.edu.cn organization: School of Mathematical Sciences and Key Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing Normal University, Beijing, China – sequence: 2 givenname: Shurong surname: Jiang fullname: Jiang, Shurong email: sxjiangsr@126.com organization: School of Mathematical Sciences and Key Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing Normal University, Beijing, China – sequence: 3 givenname: Fusheng orcidid: 0000-0001-9144-9150 surname: Yu fullname: Yu, Fusheng email: yufusheng@bnu.edu.cn organization: School of Mathematical Sciences and Key Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing Normal University, Beijing, China – sequence: 4 givenname: Witold orcidid: 0000-0002-9335-9930 surname: Pedrycz fullname: Pedrycz, Witold email: wpedrycz@ualberta.ca organization: Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada – sequence: 5 givenname: Huilin surname: Yang fullname: Yang, Huilin email: huilinyang@mail.bnu.edu.cn organization: School of Mathematical Sciences and Key Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing Normal University, Beijing, China – sequence: 6 givenname: Yadong surname: Hao fullname: Hao, Yadong email: haoyadong132@foxmail.com organization: School of Mathematical Sciences and Key Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing Normal University, Beijing, China |
| BookMark | eNp9kT1PwzAQhi0EogX6AxBLJBaWFH80iT22EQWkIgbK0Mly40txlTjFTob21-PSiqEDXu50975n3-MrdG4bCwjdEjwkBIvHeb6YDCmmdMgIHwkhzlCfkpTHlGbJ-V-eZj008H6Nw-GhJPgl6rGEM8xE0keLmbGgXDTtdrtt9GrLxtWqNY2Nn52yXQXxRHnQx34ev4GyPhpXq8aZ9quOgj7Kq8634IxdRXNTQ_QRcvA36KJUlYfBMV6jz-nTPH-JZ-_Pr_l4FheMpm2cEUI0sEIvMdegUwFJikNxKXhBsxKzZTEalVglTGsyEhw4T7KwL9VEp6CAXaOHw9yNa7478K2sjS-gqpSFpvOShp1xigXLgvT-RLpuOmfD6yTlIsE4YykLKnJQFa7x3kEpN87Uym0lwXKPXu7Ryz16eUQfPNmJpzDtL8fWKVP967w7OA0A_N0kOBU0fNEPG3KQIw |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3454540 crossref_primary_10_1109_TCYB_2025_3582771 crossref_primary_10_1109_TFUZZ_2024_3466175 crossref_primary_10_1002_cpe_8395 crossref_primary_10_3389_fnagi_2023_1254463 crossref_primary_10_1016_j_fss_2025_109522 crossref_primary_10_1109_TCYB_2025_3534195 crossref_primary_10_1161_JAHA_124_040634 crossref_primary_10_1109_TFUZZ_2024_3449769 crossref_primary_10_1016_j_ins_2024_121861 crossref_primary_10_1109_TIM_2023_3318728 crossref_primary_10_1109_TSG_2025_3564472 crossref_primary_10_1109_TFUZZ_2024_3497974 |
| Cites_doi | 10.1016/j.ijar.2019.02.005 10.1016/S0020-0255(02)00179-2 10.1109/ECTICON.2009.5137128 10.1016/j.patcog.2005.01.025 10.1145/775047.775062 10.1145/312624.312676 10.1016/j.ijar.2011.03.002 10.1109/3477.907568 10.1109/10.486255 10.1016/j.ijar.2014.11.002 10.1016/j.ins.2019.10.020 10.3390/ijerph110302741 10.1016/j.eswa.2013.12.005 10.5120/1326-1808 10.5120/8282-1278 10.1016/j.ins.2020.04.009 10.1109/TFUZZ.2021.3113762 10.1016/j.engappai.2015.01.006 10.1016/j.ijar.2016.10.010 10.1007/PL00011669 10.1142/9789814261302_0022 10.1109/TASSP.1978.1163055 10.1109/MUE.2007.165 10.1016/j.asoc.2016.12.055 10.1145/568518.568520 10.1016/j.patcog.2010.09.013 10.1016/j.patcog.2003.12.018 10.1109/TCYB.2019.2901268 10.1109/TCYB.2020.2970455 10.1016/j.asoc.2018.09.032 10.1177/1369433218789191 10.1016/j.knosys.2015.05.005 10.1016/j.patcog.2018.03.011 10.1109/TFUZZ.2021.3062723 10.1016/j.is.2015.04.007 10.1137/070690274 10.1109/TCYB.2019.2945999 10.1016/j.asoc.2014.11.024 10.1109/QSIC.2004.1357955 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2022.3184999 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) Online IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Aerospace Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 7634 |
| ExternalDocumentID | 10_1109_TCYB_2022_3184999 9829230 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11971065; 11571001 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD AARMG F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c326t-7111de3cdb08ded69e560711b98c27f03bc44f0a53dd1498e88578492d1d6eae3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000826059400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Thu Oct 02 07:04:18 EDT 2025 Mon Jun 30 04:33:10 EDT 2025 Sat Nov 29 07:09:08 EST 2025 Tue Nov 18 22:16:48 EST 2025 Wed Oct 29 06:12:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c326t-7111de3cdb08ded69e560711b98c27f03bc44f0a53dd1498e88578492d1d6eae3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9144-9150 0000-0002-9335-9930 |
| PMID | 35830395 |
| PQID | 2895007363 |
| PQPubID | 85422 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2689060937 crossref_primary_10_1109_TCYB_2022_3184999 proquest_journals_2895007363 ieee_primary_9829230 crossref_citationtrail_10_1109_TCYB_2022_3184999 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 Chen (ref42) 2015 ref10 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 Sakoe (ref33); 3 ref9 ref4 ref3 ref6 ref5 Keogh (ref32) ref40 |
| References_xml | – ident: ref5 doi: 10.1016/j.ijar.2019.02.005 – ident: ref20 doi: 10.1016/S0020-0255(02)00179-2 – ident: ref40 doi: 10.1109/ECTICON.2009.5137128 – ident: ref3 doi: 10.1016/j.patcog.2005.01.025 – ident: ref1 doi: 10.1145/775047.775062 – volume: 3 start-page: 65 volume-title: Proc. 7th Int. Congr. Acoust. ident: ref33 article-title: A dynamic programming approach to continuous speech recognition – ident: ref16 doi: 10.1145/312624.312676 – ident: ref21 doi: 10.1016/j.ijar.2011.03.002 – ident: ref19 doi: 10.1109/3477.907568 – ident: ref38 doi: 10.1109/10.486255 – ident: ref24 doi: 10.1016/j.ijar.2014.11.002 – ident: ref6 doi: 10.1016/j.ins.2019.10.020 – ident: ref10 doi: 10.3390/ijerph110302741 – ident: ref26 doi: 10.1016/j.eswa.2013.12.005 – ident: ref8 doi: 10.5120/1326-1808 – ident: ref2 doi: 10.5120/8282-1278 – ident: ref4 doi: 10.1016/j.ins.2020.04.009 – ident: ref27 doi: 10.1109/TFUZZ.2021.3113762 – ident: ref37 doi: 10.1016/j.engappai.2015.01.006 – ident: ref29 doi: 10.1016/j.ijar.2016.10.010 – ident: ref14 doi: 10.1007/PL00011669 – ident: ref18 doi: 10.1142/9789814261302_0022 – ident: ref34 doi: 10.1109/TASSP.1978.1163055 – ident: ref39 doi: 10.1109/MUE.2007.165 – ident: ref13 doi: 10.1016/j.asoc.2016.12.055 – volume-title: The UCR Time Series Classification Archive year: 2015 ident: ref42 – ident: ref15 doi: 10.1145/568518.568520 – ident: ref35 doi: 10.1016/j.patcog.2010.09.013 – start-page: 239 volume-title: Proc. 4th Int. Conf. Knowl. Disc. Data Min. ident: ref32 article-title: An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback – ident: ref12 doi: 10.1016/j.patcog.2003.12.018 – ident: ref23 doi: 10.1109/TCYB.2019.2901268 – ident: ref36 doi: 10.1109/TCYB.2020.2970455 – ident: ref30 doi: 10.1016/j.asoc.2018.09.032 – ident: ref11 doi: 10.1177/1369433218789191 – ident: ref17 doi: 10.1016/j.knosys.2015.05.005 – ident: ref22 doi: 10.1016/j.patcog.2018.03.011 – ident: ref28 doi: 10.1109/TFUZZ.2021.3062723 – ident: ref9 doi: 10.1016/j.is.2015.04.007 – ident: ref31 doi: 10.1137/070690274 – ident: ref7 doi: 10.1109/TCYB.2019.2945999 – ident: ref25 doi: 10.1016/j.asoc.2014.11.024 – ident: ref41 doi: 10.1109/QSIC.2004.1357955 |
| SSID | ssj0000816898 |
| Score | 2.446559 |
| Snippet | This article aims to design a trend-oriented-granulation-based fuzzy <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>-means (FCM)... This article aims to design a trend-oriented-granulation-based fuzzy [Formula Omitted]-means (FCM) algorithm that can cluster a group of time series at an... This article aims to design a trend-oriented-granulation-based fuzzy C -means (FCM) algorithm that can cluster a group of time series at an abstract (granular)... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 7622 |
| SubjectTerms | Algorithms Clustering Clustering algorithms Dynamic time warping (DTW) fuzzy C-means (FCM) Granular materials Granulation Heuristic algorithms Iterative methods linear fuzzy information granule (LFIG) l₁ trend filtering Merging Prototypes Segments Time measurement Time series Time series analysis time-series clustering Trends |
| Title | Linear Fuzzy Information-Granule-Based Fuzzy C-Means Algorithm for Clustering Time Series |
| URI | https://ieeexplore.ieee.org/document/9829230 https://www.proquest.com/docview/2895007363 https://www.proquest.com/docview/2689060937 |
| Volume | 53 |
| WOSCitedRecordID | wos000826059400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEB6sSLkXq9XSs_ZIoQ-2NJrd7I_k8Tw8fan4YOHuadlN5lTY3sndraB_vZNsXAqVQt8CmV2W_SaZmUxmPoCvSZRYpUXF81ImPDGeDRAjbsrYRjKpyCkoPdlEfnmpJhN9tQE_uloYRPSXz_DYDX0u3y5M447KTrSKyR-hAP1NnmdtrVZ3nuIJJDz1bUwDTl5FHpKYkdAn16PpKQWDcUwxqnJOfg_eylTR_u2IJf6wSJ5i5a992Rub8bv_-8wd2A5OJRu2WrALGzh_D7th2a7YUegt_W0PphR7km6zcfP09MhCLZLDhp-T0Wpq5Kdk1myYH_GfSKaMDeubxfJuffubkTwb1Y3rrkA2j7kCEuYO2HC1D7_GZ9ejCx7YFbghl23Nc9rlLEpjK6Es2kxj6nrNRZVWJs5nQlYmSWaiTKW1FEYpVIpWd6IJQ5thifIDbM4Xc_wIjOQr1NJinFlyr2QVi8xGmGKm5Qwr0Qfx8ocLE1qPOwaMuvAhiNCFw6dw-BQBnz587x65b_tu_Et4z6HQCQYA-nD4AmMRVuaqoAAzdenJTPbhSzdNa8olSso5LhqSIU0SmSDP7eD1N3-CnqOdb6-1HMLmetngZ9gyD-u71XJA6jlRA6-ezz1_3dM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RaxQxEB5KW7Qvaq3S06op9EHFtNkku5s8tkfPiu3hwwnt07KbzNnCeSd3twX7653k0kVQBN8CmV2W_WYyM0lmPoADnWlvrGh4WSvNtYtsgJhxV0ufKd1QUFBHsolyODSXl_bLGnzoamEQMV4-w8MwjGf5fubasFV2ZI2keIQS9I1caylW1VrdjkqkkIjkt5IGnOKKMh1jZsIejfpXJ5QOSklZqglh_hY8ULmhFTxQS_zmkyLJyh8rc3Q3g8f_96FP4FEKK9nxSg-2YQ2nT2E7Ge6CvU3dpd_twBVln6TdbNDe3f1kqRopoMM_kttqJ8hPyLH5NN_nF0jOjB1Pvs3mN8vr74zkWX_Shv4K5PVYKCFhYYsNF8_g6-B01D_jiV-BOwralrykdc6jcr4RxqMvLOah21zWWONkORaqcVqPRZ0r7ymRMmgM2be2hKIvsEb1HNansynuAiP5Bq3yKAtPAZZqpCh8hjkWVo2xET0Q93-4cqn5eODAmFQxCRG2CvhUAZ8q4dOD990jP1adN_4lvBNQ6AQTAD3Yu4exSra5qCjFzMMBZaF6sN9Nk1WFo5J6irOWZEiTRCEodnvx9ze_gYdno4vz6vzT8PNL2Aok9KtLLnuwvpy3-Ao23e3yZjF_HZX0F7S54DI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+Fuzzy+Information-Granule-Based+Fuzzy+C+-Means+Algorithm+for+Clustering+Time+Series&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Yang%2C+Zonglin&rft.au=Jiang%2C+Shurong&rft.au=Yu%2C+Fusheng&rft.au=Pedrycz%2C+Witold&rft.date=2023-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=53&rft.issue=12&rft.spage=7622&rft_id=info:doi/10.1109%2FTCYB.2022.3184999&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |