Linear Fuzzy Information-Granule-Based Fuzzy C-Means Algorithm for Clustering Time Series

This article aims to design a trend-oriented-granulation-based fuzzy <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>-means (FCM) algorithm that can cluster a group of time series at an abstract (granular) level. To achieve a better trend-o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cybernetics Ročník 53; číslo 12; s. 7622 - 7634
Hlavní autoři: Yang, Zonglin, Jiang, Shurong, Yu, Fusheng, Pedrycz, Witold, Yang, Huilin, Hao, Yadong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This article aims to design a trend-oriented-granulation-based fuzzy <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>-means (FCM) algorithm that can cluster a group of time series at an abstract (granular) level. To achieve a better trend-oriented granulation of a time series, <inline-formula> <tex-math notation="LaTeX">{l}_{1} </tex-math></inline-formula> trend filtering is firstly carried out to result in segments which are then optimized by the proposed segment merging algorithm. By constructing a linear fuzzy information granule (LFIG) on each segment, a granular time series which well reflects the linear trend characteristic of the original time series is produced. With the novel designed distance that can well measure the trend similarity of two LFIGs, the distance between two granular time series is calculated by the modified dynamic time warping (DTW) algorithm. Based on this distance, the LFIG-based FCM algorithm is developed for clustering time series. In this algorithm, cluster prototypes are iteratively updated by the specifically designed granule splitting and merging algorithm, which allows the lengths of prototypes to change in the process of iteration. This overcomes the serious drawback of the existing approaches, where the lengths of prototypes cannot be changed. Experimental studies demonstrate the superior performance of the proposed algorithm in clustering time series with different shapes or trends.
AbstractList This article aims to design a trend-oriented-granulation-based fuzzy [Formula Omitted]-means (FCM) algorithm that can cluster a group of time series at an abstract (granular) level. To achieve a better trend-oriented granulation of a time series, [Formula Omitted] trend filtering is firstly carried out to result in segments which are then optimized by the proposed segment merging algorithm. By constructing a linear fuzzy information granule (LFIG) on each segment, a granular time series which well reflects the linear trend characteristic of the original time series is produced. With the novel designed distance that can well measure the trend similarity of two LFIGs, the distance between two granular time series is calculated by the modified dynamic time warping (DTW) algorithm. Based on this distance, the LFIG-based FCM algorithm is developed for clustering time series. In this algorithm, cluster prototypes are iteratively updated by the specifically designed granule splitting and merging algorithm, which allows the lengths of prototypes to change in the process of iteration. This overcomes the serious drawback of the existing approaches, where the lengths of prototypes cannot be changed. Experimental studies demonstrate the superior performance of the proposed algorithm in clustering time series with different shapes or trends.
This article aims to design a trend-oriented-granulation-based fuzzy C -means (FCM) algorithm that can cluster a group of time series at an abstract (granular) level. To achieve a better trend-oriented granulation of a time series, l1 trend filtering is firstly carried out to result in segments which are then optimized by the proposed segment merging algorithm. By constructing a linear fuzzy information granule (LFIG) on each segment, a granular time series which well reflects the linear trend characteristic of the original time series is produced. With the novel designed distance that can well measure the trend similarity of two LFIGs, the distance between two granular time series is calculated by the modified dynamic time warping (DTW) algorithm. Based on this distance, the LFIG-based FCM algorithm is developed for clustering time series. In this algorithm, cluster prototypes are iteratively updated by the specifically designed granule splitting and merging algorithm, which allows the lengths of prototypes to change in the process of iteration. This overcomes the serious drawback of the existing approaches, where the lengths of prototypes cannot be changed. Experimental studies demonstrate the superior performance of the proposed algorithm in clustering time series with different shapes or trends.This article aims to design a trend-oriented-granulation-based fuzzy C -means (FCM) algorithm that can cluster a group of time series at an abstract (granular) level. To achieve a better trend-oriented granulation of a time series, l1 trend filtering is firstly carried out to result in segments which are then optimized by the proposed segment merging algorithm. By constructing a linear fuzzy information granule (LFIG) on each segment, a granular time series which well reflects the linear trend characteristic of the original time series is produced. With the novel designed distance that can well measure the trend similarity of two LFIGs, the distance between two granular time series is calculated by the modified dynamic time warping (DTW) algorithm. Based on this distance, the LFIG-based FCM algorithm is developed for clustering time series. In this algorithm, cluster prototypes are iteratively updated by the specifically designed granule splitting and merging algorithm, which allows the lengths of prototypes to change in the process of iteration. This overcomes the serious drawback of the existing approaches, where the lengths of prototypes cannot be changed. Experimental studies demonstrate the superior performance of the proposed algorithm in clustering time series with different shapes or trends.
This article aims to design a trend-oriented-granulation-based fuzzy <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>-means (FCM) algorithm that can cluster a group of time series at an abstract (granular) level. To achieve a better trend-oriented granulation of a time series, <inline-formula> <tex-math notation="LaTeX">{l}_{1} </tex-math></inline-formula> trend filtering is firstly carried out to result in segments which are then optimized by the proposed segment merging algorithm. By constructing a linear fuzzy information granule (LFIG) on each segment, a granular time series which well reflects the linear trend characteristic of the original time series is produced. With the novel designed distance that can well measure the trend similarity of two LFIGs, the distance between two granular time series is calculated by the modified dynamic time warping (DTW) algorithm. Based on this distance, the LFIG-based FCM algorithm is developed for clustering time series. In this algorithm, cluster prototypes are iteratively updated by the specifically designed granule splitting and merging algorithm, which allows the lengths of prototypes to change in the process of iteration. This overcomes the serious drawback of the existing approaches, where the lengths of prototypes cannot be changed. Experimental studies demonstrate the superior performance of the proposed algorithm in clustering time series with different shapes or trends.
Author Jiang, Shurong
Pedrycz, Witold
Yang, Huilin
Hao, Yadong
Yu, Fusheng
Yang, Zonglin
Author_xml – sequence: 1
  givenname: Zonglin
  surname: Yang
  fullname: Yang, Zonglin
  email: zonglinyang@mail.bnu.edu.cn
  organization: School of Mathematical Sciences and Key Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing Normal University, Beijing, China
– sequence: 2
  givenname: Shurong
  surname: Jiang
  fullname: Jiang, Shurong
  email: sxjiangsr@126.com
  organization: School of Mathematical Sciences and Key Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing Normal University, Beijing, China
– sequence: 3
  givenname: Fusheng
  orcidid: 0000-0001-9144-9150
  surname: Yu
  fullname: Yu, Fusheng
  email: yufusheng@bnu.edu.cn
  organization: School of Mathematical Sciences and Key Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing Normal University, Beijing, China
– sequence: 4
  givenname: Witold
  orcidid: 0000-0002-9335-9930
  surname: Pedrycz
  fullname: Pedrycz, Witold
  email: wpedrycz@ualberta.ca
  organization: Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
– sequence: 5
  givenname: Huilin
  surname: Yang
  fullname: Yang, Huilin
  email: huilinyang@mail.bnu.edu.cn
  organization: School of Mathematical Sciences and Key Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing Normal University, Beijing, China
– sequence: 6
  givenname: Yadong
  surname: Hao
  fullname: Hao, Yadong
  email: haoyadong132@foxmail.com
  organization: School of Mathematical Sciences and Key Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing Normal University, Beijing, China
BookMark eNp9kT1PwzAQhi0EogX6AxBLJBaWFH80iT22EQWkIgbK0Mly40txlTjFTob21-PSiqEDXu50975n3-MrdG4bCwjdEjwkBIvHeb6YDCmmdMgIHwkhzlCfkpTHlGbJ-V-eZj008H6Nw-GhJPgl6rGEM8xE0keLmbGgXDTtdrtt9GrLxtWqNY2Nn52yXQXxRHnQx34ev4GyPhpXq8aZ9quOgj7Kq8634IxdRXNTQ_QRcvA36KJUlYfBMV6jz-nTPH-JZ-_Pr_l4FheMpm2cEUI0sEIvMdegUwFJikNxKXhBsxKzZTEalVglTGsyEhw4T7KwL9VEp6CAXaOHw9yNa7478K2sjS-gqpSFpvOShp1xigXLgvT-RLpuOmfD6yTlIsE4YykLKnJQFa7x3kEpN87Uym0lwXKPXu7Ryz16eUQfPNmJpzDtL8fWKVP967w7OA0A_N0kOBU0fNEPG3KQIw
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3454540
crossref_primary_10_1109_TCYB_2025_3582771
crossref_primary_10_1109_TFUZZ_2024_3466175
crossref_primary_10_1002_cpe_8395
crossref_primary_10_3389_fnagi_2023_1254463
crossref_primary_10_1016_j_fss_2025_109522
crossref_primary_10_1109_TCYB_2025_3534195
crossref_primary_10_1161_JAHA_124_040634
crossref_primary_10_1109_TFUZZ_2024_3449769
crossref_primary_10_1016_j_ins_2024_121861
crossref_primary_10_1109_TIM_2023_3318728
crossref_primary_10_1109_TSG_2025_3564472
crossref_primary_10_1109_TFUZZ_2024_3497974
Cites_doi 10.1016/j.ijar.2019.02.005
10.1016/S0020-0255(02)00179-2
10.1109/ECTICON.2009.5137128
10.1016/j.patcog.2005.01.025
10.1145/775047.775062
10.1145/312624.312676
10.1016/j.ijar.2011.03.002
10.1109/3477.907568
10.1109/10.486255
10.1016/j.ijar.2014.11.002
10.1016/j.ins.2019.10.020
10.3390/ijerph110302741
10.1016/j.eswa.2013.12.005
10.5120/1326-1808
10.5120/8282-1278
10.1016/j.ins.2020.04.009
10.1109/TFUZZ.2021.3113762
10.1016/j.engappai.2015.01.006
10.1016/j.ijar.2016.10.010
10.1007/PL00011669
10.1142/9789814261302_0022
10.1109/TASSP.1978.1163055
10.1109/MUE.2007.165
10.1016/j.asoc.2016.12.055
10.1145/568518.568520
10.1016/j.patcog.2010.09.013
10.1016/j.patcog.2003.12.018
10.1109/TCYB.2019.2901268
10.1109/TCYB.2020.2970455
10.1016/j.asoc.2018.09.032
10.1177/1369433218789191
10.1016/j.knosys.2015.05.005
10.1016/j.patcog.2018.03.011
10.1109/TFUZZ.2021.3062723
10.1016/j.is.2015.04.007
10.1137/070690274
10.1109/TCYB.2019.2945999
10.1016/j.asoc.2014.11.024
10.1109/QSIC.2004.1357955
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2022.3184999
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 7634
ExternalDocumentID 10_1109_TCYB_2022_3184999
9829230
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11971065; 11571001
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
AARMG
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c326t-7111de3cdb08ded69e560711b98c27f03bc44f0a53dd1498e88578492d1d6eae3
IEDL.DBID RIE
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000826059400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Thu Oct 02 07:04:18 EDT 2025
Mon Jun 30 04:33:10 EDT 2025
Sat Nov 29 07:09:08 EST 2025
Tue Nov 18 22:16:48 EST 2025
Wed Oct 29 06:12:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-7111de3cdb08ded69e560711b98c27f03bc44f0a53dd1498e88578492d1d6eae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9144-9150
0000-0002-9335-9930
PMID 35830395
PQID 2895007363
PQPubID 85422
PageCount 13
ParticipantIDs proquest_miscellaneous_2689060937
crossref_primary_10_1109_TCYB_2022_3184999
proquest_journals_2895007363
ieee_primary_9829230
crossref_citationtrail_10_1109_TCYB_2022_3184999
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
Chen (ref42) 2015
ref10
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref41
ref22
ref21
ref28
ref27
ref29
ref8
ref7
Sakoe (ref33); 3
ref9
ref4
ref3
ref6
ref5
Keogh (ref32)
ref40
References_xml – ident: ref5
  doi: 10.1016/j.ijar.2019.02.005
– ident: ref20
  doi: 10.1016/S0020-0255(02)00179-2
– ident: ref40
  doi: 10.1109/ECTICON.2009.5137128
– ident: ref3
  doi: 10.1016/j.patcog.2005.01.025
– ident: ref1
  doi: 10.1145/775047.775062
– volume: 3
  start-page: 65
  volume-title: Proc. 7th Int. Congr. Acoust.
  ident: ref33
  article-title: A dynamic programming approach to continuous speech recognition
– ident: ref16
  doi: 10.1145/312624.312676
– ident: ref21
  doi: 10.1016/j.ijar.2011.03.002
– ident: ref19
  doi: 10.1109/3477.907568
– ident: ref38
  doi: 10.1109/10.486255
– ident: ref24
  doi: 10.1016/j.ijar.2014.11.002
– ident: ref6
  doi: 10.1016/j.ins.2019.10.020
– ident: ref10
  doi: 10.3390/ijerph110302741
– ident: ref26
  doi: 10.1016/j.eswa.2013.12.005
– ident: ref8
  doi: 10.5120/1326-1808
– ident: ref2
  doi: 10.5120/8282-1278
– ident: ref4
  doi: 10.1016/j.ins.2020.04.009
– ident: ref27
  doi: 10.1109/TFUZZ.2021.3113762
– ident: ref37
  doi: 10.1016/j.engappai.2015.01.006
– ident: ref29
  doi: 10.1016/j.ijar.2016.10.010
– ident: ref14
  doi: 10.1007/PL00011669
– ident: ref18
  doi: 10.1142/9789814261302_0022
– ident: ref34
  doi: 10.1109/TASSP.1978.1163055
– ident: ref39
  doi: 10.1109/MUE.2007.165
– ident: ref13
  doi: 10.1016/j.asoc.2016.12.055
– volume-title: The UCR Time Series Classification Archive
  year: 2015
  ident: ref42
– ident: ref15
  doi: 10.1145/568518.568520
– ident: ref35
  doi: 10.1016/j.patcog.2010.09.013
– start-page: 239
  volume-title: Proc. 4th Int. Conf. Knowl. Disc. Data Min.
  ident: ref32
  article-title: An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback
– ident: ref12
  doi: 10.1016/j.patcog.2003.12.018
– ident: ref23
  doi: 10.1109/TCYB.2019.2901268
– ident: ref36
  doi: 10.1109/TCYB.2020.2970455
– ident: ref30
  doi: 10.1016/j.asoc.2018.09.032
– ident: ref11
  doi: 10.1177/1369433218789191
– ident: ref17
  doi: 10.1016/j.knosys.2015.05.005
– ident: ref22
  doi: 10.1016/j.patcog.2018.03.011
– ident: ref28
  doi: 10.1109/TFUZZ.2021.3062723
– ident: ref9
  doi: 10.1016/j.is.2015.04.007
– ident: ref31
  doi: 10.1137/070690274
– ident: ref7
  doi: 10.1109/TCYB.2019.2945999
– ident: ref25
  doi: 10.1016/j.asoc.2014.11.024
– ident: ref41
  doi: 10.1109/QSIC.2004.1357955
SSID ssj0000816898
Score 2.446559
Snippet This article aims to design a trend-oriented-granulation-based fuzzy <inline-formula> <tex-math notation="LaTeX">C </tex-math></inline-formula>-means (FCM)...
This article aims to design a trend-oriented-granulation-based fuzzy [Formula Omitted]-means (FCM) algorithm that can cluster a group of time series at an...
This article aims to design a trend-oriented-granulation-based fuzzy C -means (FCM) algorithm that can cluster a group of time series at an abstract (granular)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7622
SubjectTerms Algorithms
Clustering
Clustering algorithms
Dynamic time warping (DTW)
fuzzy C-means (FCM)
Granular materials
Granulation
Heuristic algorithms
Iterative methods
linear fuzzy information granule (LFIG)
l₁ trend filtering
Merging
Prototypes
Segments
Time measurement
Time series
Time series analysis
time-series clustering
Trends
Title Linear Fuzzy Information-Granule-Based Fuzzy C-Means Algorithm for Clustering Time Series
URI https://ieeexplore.ieee.org/document/9829230
https://www.proquest.com/docview/2895007363
https://www.proquest.com/docview/2689060937
Volume 53
WOSCitedRecordID wos000826059400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEB5Uivhi6y969ioRfKhiNLfZ3WQf9ei1L0ofFM6nJbuZqHC9k7tbQf96J7ncUrAU-raQ7LJkZjLfl8nMABylaKRLZMqrygkiKFJyg7XjhtCxNEoZoarQbEJdX-vhsPi1AqdtLgwihstneOYfQyzfTurGH5WdFzohPEIEfVWpfJGr1Z6nhAYSofVtQg-cUIWKQcyeKM5v-neXRAaThDiq9iB_A9Zlpmn_9o0l_vBIocXKu305OJvBx__7zU-wGUElu1howRas4HgbtqLZzti3WFv6eAfuiHuSbrNB8_r6wmIukpcN_0FOqxkhvyS3ZuN4n18huTJ2MbqfTB_nD78ZzWf9UeOrK5DPYz6BhPkDNpztwu3g-03_J4_dFXhNkG3OFe1yFmVtK6Et2rzAzNea61WFrhPlhKzqNHXCZNJaolEatSbrTovE9myOBuUerI0nY_wMLDMCCTY6YptVaoXUuTOS1sC5SvZSVXRALFe4rGPpcd8BY1QGCiKK0sun9PIpo3w6cNK-8rSou_GvyTteCu3EKIAOdJdiLKNlzkoimJkPT-ayA4ftMNmUD5SYMU4amkOaJHJByG3_71_-Ahu-7fziWksX1ubTBr_Ch_p5_jibHpB6DvVBUM832YDeAg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED5VG4K9AGVMKwwwEg-A8ObGTuI8bhWliK3ioUjbU-TE521SaVHbTGK_nrPrRkhMk3iLZCeKfHe-7_P57gDeKTTSJVLxqnKCCIqU3GDtuCF0LE2eG5FXodlEPh7r8_Piewc-tbkwiBgun-GhfwyxfDuvG39UdlTohPAIEfTtVKlErLO12hOV0EIiNL9N6IETrshjGLMviqPJ4OKE6GCSEEvVHubvwEOZatrBfWuJv3xSaLLyz84c3M3wyf_96FN4HGElO17rQRc6OHsG3Wi4S_Y-Vpf-sAsXxD5Ju9mwub39zWI2kpcO_0Juq5kiPyHHZuP4gJ8hOTN2PL2cL65XVz8ZzWeDaePrK5DXYz6FhPkjNlw-hx_Dz5PBiMf-Crwm0LbiOe1zFmVtK6Et2qzA1Feb61eFrpPcCVnVSjlhUmktESmNWpN9qyKxfZuhQbkHW7P5DPeBpUYgAUdHfLNSVkidOSNpDZyrZF_lRQ_EZoXLOhYf9z0wpmUgIaIovXxKL58yyqcHH9tXfq0rb9w3eddLoZ0YBdCDg40Yy2iby5IoZuoDlJnswdt2mKzKh0rMDOcNzSFNEpkg7Pbi7i-_gUejydlpefp1_O0l7Pgm9OtLLgewtVo0-Aoe1Der6-XidVDSP1NV4GE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+Fuzzy+Information-Granule-Based+Fuzzy+C+-Means+Algorithm+for+Clustering+Time+Series&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Yang%2C+Zonglin&rft.au=Jiang%2C+Shurong&rft.au=Yu%2C+Fusheng&rft.au=Pedrycz%2C+Witold&rft.date=2023-12-01&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=53&rft.issue=12&rft.spage=7622&rft.epage=7634&rft_id=info:doi/10.1109%2FTCYB.2022.3184999&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCYB_2022_3184999
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon