A Culture-Based Particle Swarm Optimization Framework for Dynamic, Constrained Multi-Objective Optimization

Real-world optimization problems are often dynamic, multiple objective in nature with various constraints and uncertainties. This work proposes solving such problems by systematic segmentation via heuristic information accumulated through Cultural Algorithms. The problem is tackled by maintaining 1)...

Full description

Saved in:
Bibliographic Details
Published in:International journal of swarm intelligence research Vol. 3; no. 1; pp. 1 - 29
Main Authors: Yen, Gary G, Kadkol, Ashwin A
Format: Journal Article
Language:English
Published: Hershey IGI Global 01.01.2012
Subjects:
ISSN:1947-9263, 1947-9271
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Real-world optimization problems are often dynamic, multiple objective in nature with various constraints and uncertainties. This work proposes solving such problems by systematic segmentation via heuristic information accumulated through Cultural Algorithms. The problem is tackled by maintaining 1) feasible and infeasible best solutions and their fitness and constraint violations in the Situational Space, 2) objective space bounds for the search in the Normative Space, 3) objective space crowding information in the Topographic Space, and 4) function sensitivity and relocation offsets (to reuse available information on optima upon change of environments) in the Historical Space of a cultural framework. The information is used to vary the flight parameters of the Particle Swarm Optimization, to generate newer individuals and to better track dynamic and multiple optima with constraints. The proposed algorithm is validated on three numerical optimization problems. As a practical application case study that is computationally intensive and complex, parameter tuning of a PID (Proportional–Integral–Derivative) controller for plants with transfer functions that vary with time and imposed with robust optimization criteria has been used to demonstrate the effectiveness and efficiency of the proposed design.
AbstractList Real-world optimization problems are often dynamic, multiple objective in nature with various constraints and uncertainties. This work proposes solving such problems by systematic segmentation via heuristic information accumulated through Cultural Algorithms. The problem is tackled by maintaining 1) feasible and infeasible best solutions and their fitness and constraint violations in the Situational Space, 2) objective space bounds for the search in the Normative Space, 3) objective space crowding information in the Topographic Space, and 4) function sensitivity and relocation offsets (to reuse available information on optima upon change of environments) in the Historical Space of a cultural framework. The information is used to vary the flight parameters of the Particle Swarm Optimization, to generate newer individuals and to better track dynamic and multiple optima with constraints. The proposed algorithm is validated on three numerical optimization problems. As a practical application case study that is computationally intensive and complex, parameter tuning of a PID (Proportional–Integral–Derivative) controller for plants with transfer functions that vary with time and imposed with robust optimization criteria has been used to demonstrate the effectiveness and efficiency of the proposed design.
Author Kadkol, Ashwin A
Yen, Gary G
AuthorAffiliation Oklahoma State University, USA
AuthorAffiliation_xml – name: Oklahoma State University, USA
Author_xml – sequence: 1
  givenname: Gary
  surname: Yen
  middlename: G
  fullname: Yen, Gary G
  organization: Oklahoma State University, USA
– sequence: 2
  givenname: Ashwin
  surname: Kadkol
  middlename: A
  fullname: Kadkol, Ashwin A
  organization: Oklahoma State University, USA
BookMark eNp9kUtPxCAUhYnRxOfabRMXurDKq2W61PGZaMZEXROGXgxjW0agGv31tjM-4kQFElic797LOetouXENILRN8AHHZHA4CdYfUEy60-8ltEYKLtKCCrL89c7ZKtoKYYK7lXEhMraGHo-SYVvF1kN6rAKUyY3y0eoKktsX5etkNI22tm8qWtckZ17V8OL8Y2KcT05eG1VbvZ8MXROiV7bp8OuumE1H4wnoaJ_hB7-JVoyqAmx93Bvo_uz0bniRXo3OL4dHV6lmNI9prjE1uhQ5lARTnZExGIwNV9pgXeaGG1GUoMeCYJ1BNmBKGTHAdMALg8EYtoH25nWn3j21EKKsbdBQVaoB1wZJGC84zTkTnXRnQTpxrW-66SQtmKAFJqToVIdzlfYuBA9GTr2tlX-VBMvef9n7L7_974hsgdA2zkzojar-4XbnnH2w36MsqOS07D95-otylqScJSk_k5R9kn81ZO_VnbJb
CitedBy_id crossref_primary_10_1109_TEVC_2013_2296151
crossref_primary_10_4018_ijsir_2013070101
crossref_primary_10_3390_su10124445
crossref_primary_10_1016_j_jiec_2025_02_013
Cites_doi 10.1007/3-540-45105-6_4
10.1109/ICNN.1995.488968
10.1109/TMAG.2005.846033
10.1007/3-540-45105-6_95
10.1109/TEVC.2008.2009031
10.1016/S0045-7825(01)00323-1
10.1080/03052150210915
10.1007/3-540-61723-X_989
10.1109/CEC.1999.785526
10.1109/TEVC.2008.2009032
10.1080/01969720500306147
10.1117/12.969927
10.1515/9781503621534
10.1109/TEVC.2005.846356
10.1007/BFb0014823
10.1007/978-3-540-24854-5_11
10.1007/11844297_53
10.1887/0750308958/b386c48
10.1016/j.automatica.2007.08.017
10.1109/CEC.2003.1299388
10.1007/978-3-540-30217-9_77
10.1162/evco.1996.4.1.1
10.1109/CEC.2004.1331061
10.1109/TEVC.2006.872344
10.1109/TSMCB.2010.2068046
10.1109/ICEC.1998.699839
10.1007/978-3-540-31880-4_35
10.1007/3-540-36970-8_22
10.1109/CEC.2000.870774
10.1145/1527125.1527138
10.1109/4235.974840
10.1109/CEC.2003.1299886
10.1145/508791.508907
10.1109/CEC.2009.4982947
ContentType Journal Article
Copyright Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Copyright_xml – notice: Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
DBID AAYXX
CITATION
7SC
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.4018/jsir.2012010101
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Computer Science Database
Computer and Information Systems Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1947-9271
EndPage 29
ExternalDocumentID 10_4018_jsir_2012010101
lture_Based_Particle_Swar10_4018_jsir_20120101013
GroupedDBID 0R~
4.4
AAOUZ
AAYVP
ABEPT
ABGRR
ACOJC
ADEKF
ALMA_UNASSIGNED_HOLDINGS
BYHXH
CBWLS
CDTDJ
CIGCI
CKMBR
CNQXE
COVLG
EBS
EJD
H13
HZ~
JRD
MV1
NEEBM
O9-
RIF
AAYXX
ABJCF
ADMLS
AFFHD
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
CTSEY
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
7SC
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L6V
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c326t-6c02fcd76ed102c51bef00f4acf0cd6f4f79decb710c5e583aaf7802849f0eff3
IEDL.DBID M7S
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000219009900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1947-9263
IngestDate Wed Oct 01 13:47:53 EDT 2025
Sun Jul 13 03:55:41 EDT 2025
Tue Nov 18 21:26:52 EST 2025
Sat Nov 29 06:00:55 EST 2025
Thu May 09 18:41:41 EDT 2019
Mon Oct 17 10:24:30 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-6c02fcd76ed102c51bef00f4acf0cd6f4f79decb710c5e583aaf7802849f0eff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 2937290119
PQPubID 2045809
PageCount 29
ParticipantIDs crossref_citationtrail_10_4018_jsir_2012010101
crossref_primary_10_4018_jsir_2012010101
proquest_journals_2937290119
proquest_miscellaneous_1349426437
igi_journals_lture_Based_Particle_Swar10_4018_jsir_20120101013
PublicationCentury 2000
PublicationDate 2012-01-01T00:00:00
2012-1-1
20120101
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 2012-01-01T00:00:00
  day: 01
PublicationDecade 2010
PublicationPlace Hershey
PublicationPlace_xml – name: Hershey
PublicationTitle International journal of swarm intelligence research
PublicationYear 2012
Publisher IGI Global
Publisher_xml – name: IGI Global
References jsir.2012010101-45
jsir.2012010101-46
jsir.2012010101-47
jsir.2012010101-48
jsir.2012010101-49
jsir.2012010101-40
jsir.2012010101-41
jsir.2012010101-43
jsir.2012010101-44
jsir.2012010101-12
jsir.2012010101-13
jsir.2012010101-15
jsir.2012010101-16
jsir.2012010101-17
jsir.2012010101-18
jsir.2012010101-19
jsir.2012010101-50
jsir.2012010101-51
jsir.2012010101-10
jsir.2012010101-23
jsir.2012010101-24
jsir.2012010101-25
jsir.2012010101-26
jsir.2012010101-27
jsir.2012010101-28
jsir.2012010101-29
D. E.Goldberg (jsir.2012010101-14) 1989
jsir.2012010101-20
jsir.2012010101-21
jsir.2012010101-22
jsir.2012010101-4
jsir.2012010101-34
jsir.2012010101-3
jsir.2012010101-35
jsir.2012010101-36
jsir.2012010101-5
jsir.2012010101-37
jsir.2012010101-0
jsir.2012010101-38
jsir.2012010101-39
jsir.2012010101-2
jsir.2012010101-1
jsir.2012010101-8
jsir.2012010101-7
jsir.2012010101-9
A. E.Smith (jsir.2012010101-42) 1997
H. G.Cobb (jsir.2012010101-6) 1994; 27
W. H.Durham (jsir.2012010101-11) 1991
jsir.2012010101-30
jsir.2012010101-31
jsir.2012010101-32
jsir.2012010101-33
References_xml – ident: jsir.2012010101-25
  doi: 10.1007/3-540-45105-6_4
– ident: jsir.2012010101-21
  doi: 10.1109/ICNN.1995.488968
– ident: jsir.2012010101-34
– ident: jsir.2012010101-28
– ident: jsir.2012010101-24
– volume: 27
  start-page: 523
  issue: 2
  year: 1994
  ident: jsir.2012010101-6
  article-title: Genetic algorithms for tracking changing environments.
  publication-title: Australian Electronics Engineering
– ident: jsir.2012010101-15
  doi: 10.1109/TMAG.2005.846033
– ident: jsir.2012010101-5
  doi: 10.1007/3-540-45105-6_95
– year: 1989
  ident: jsir.2012010101-14
  publication-title: Genetic algorithms in search, optimization and machine learning
– ident: jsir.2012010101-48
  doi: 10.1109/TEVC.2008.2009031
– ident: jsir.2012010101-7
  doi: 10.1016/S0045-7825(01)00323-1
– ident: jsir.2012010101-36
  doi: 10.1080/03052150210915
– ident: jsir.2012010101-40
  doi: 10.1007/3-540-61723-X_989
– ident: jsir.2012010101-29
– ident: jsir.2012010101-31
  doi: 10.1109/CEC.1999.785526
– ident: jsir.2012010101-47
  doi: 10.1109/TEVC.2008.2009032
– ident: jsir.2012010101-39
  doi: 10.1080/01969720500306147
– ident: jsir.2012010101-23
  doi: 10.1117/12.969927
– year: 1991
  ident: jsir.2012010101-11
  publication-title: Coevolution
  doi: 10.1515/9781503621534
– ident: jsir.2012010101-19
  doi: 10.1109/TEVC.2005.846356
– ident: jsir.2012010101-0
  doi: 10.1007/BFb0014823
– ident: jsir.2012010101-8
– ident: jsir.2012010101-26
  doi: 10.1007/978-3-540-24854-5_11
– ident: jsir.2012010101-3
  doi: 10.1007/11844297_53
– ident: jsir.2012010101-45
– year: 1997
  ident: jsir.2012010101-42
  article-title: Constraint handling techniques--penalty functions
  publication-title: Handbook of evolutionary computation
  doi: 10.1887/0750308958/b386c48
– ident: jsir.2012010101-49
– ident: jsir.2012010101-9
– ident: jsir.2012010101-16
– ident: jsir.2012010101-22
  doi: 10.1016/j.automatica.2007.08.017
– ident: jsir.2012010101-50
  doi: 10.1109/CEC.2003.1299388
– ident: jsir.2012010101-27
  doi: 10.1007/978-3-540-30217-9_77
– ident: jsir.2012010101-30
  doi: 10.1162/evco.1996.4.1.1
– ident: jsir.2012010101-33
  doi: 10.1109/CEC.2004.1331061
– ident: jsir.2012010101-37
– ident: jsir.2012010101-4
  doi: 10.1109/TEVC.2006.872344
– ident: jsir.2012010101-10
  doi: 10.1109/TSMCB.2010.2068046
– ident: jsir.2012010101-2
  doi: 10.1109/ICEC.1998.699839
– ident: jsir.2012010101-41
  doi: 10.1007/978-3-540-31880-4_35
– ident: jsir.2012010101-12
  doi: 10.1007/3-540-36970-8_22
– ident: jsir.2012010101-20
– ident: jsir.2012010101-46
  doi: 10.1109/CEC.2000.870774
– ident: jsir.2012010101-44
– ident: jsir.2012010101-1
  doi: 10.1145/1527125.1527138
– ident: jsir.2012010101-43
  doi: 10.1109/4235.974840
– ident: jsir.2012010101-38
– ident: jsir.2012010101-32
  doi: 10.1109/CEC.2003.1299886
– ident: jsir.2012010101-17
– ident: jsir.2012010101-35
  doi: 10.1145/508791.508907
– ident: jsir.2012010101-51
– ident: jsir.2012010101-13
– ident: jsir.2012010101-18
  doi: 10.1109/CEC.2009.4982947
SSID ssj0000547753
Score 1.83258
Snippet Real-world optimization problems are often dynamic, multiple objective in nature with various constraints and uncertainties. This work proposes solving such...
SourceID proquest
crossref
igi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Constraints
Dynamics
Mathematical models
Multiple objective analysis
Optimization
Parameters
Particle swarm optimization
Proportional integral derivative
Relocation
Robustness (mathematics)
Searching
Segmentation
Transfer functions
Tuning
Title A Culture-Based Particle Swarm Optimization Framework for Dynamic, Constrained Multi-Objective Optimization
URI http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jsir.2012010101
https://www.proquest.com/docview/2937290119
https://www.proquest.com/docview/1349426437
Volume 3
WOSCitedRecordID wos000219009900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1947-9271
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0000547753
  issn: 1947-9263
  databaseCode: K7-
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1947-9271
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0000547753
  issn: 1947-9263
  databaseCode: M7S
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1947-9271
  dateEnd: 20211231
  omitProxy: false
  ssIdentifier: ssj0000547753
  issn: 1947-9263
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6RlgMXylMslMhIHDhguptdr3cvoBYaISGlEQWpN8vrR5VCk5BN4e8z4_UmKqhcOPupedtjzwfwUqaFEa5yhF5W88JowytjBbca3VkpaqsbG8Am5GRSnZ3V03jh1sZnlb1NDIbaLgzdkR-gW5KU88vqd8sfnFCjKLsaITQGsEtVErLwdO90c8eC4YjsClHiUV3yelTmXXUfPFRUBxftjAqCZpQPziIoTO-YBrPz2V_WObic8d7_bvYe3I3BJjvspOM-3HLzB7DXAzmwqNcP4dsh60prOn6EXs2yaRQodvpLry7ZCdqVy_hhk43751wM4132oUO0f80I-TPgTeDw8KuXnzQXnTW9Nv4RfB0ff3n_kUcUBm4wtFvz0qQjb6wsncVgxIiscT5NfaGNT40tfeFlbZ1pkLfIdVHlWntZYdhS1D513uePYWe-mLsnwHxG8VAzSp0uC-eE9oXNSuHS2o-EFTqBNz0LlIklymnn3xUeVYhninimtjxL4NVmwLKrznFzV4Y8VVFD2z-b1dL6BN5e6xLorgLdVU93RXS_YYk8gf1eHLazbGUhgRebZlRiyszouVtctYpqRFJomsun_57iGdyh9bo7oH3YWa-u3HO4bX6uZ-1qCLtHx5Pp5yEMPkk-DLrwG8oXERg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB61BQkulKcIFDASSBwwzdvJAVChrFpt2VaiSL0Zxw-UwmaXzZaqf4rfyEweuyqo3HrgnNhOxp_nG7_mA3gm_FgnNrOkXpbzWCvNM20SbhTSWZrkRhWmEZsQo1F2dJQfrMCv_i4MHavsfWLjqM1E0xr5JtKSoD2_IH87_cFJNYp2V3sJjRYWQ3t2ilO2-vXuNvbv8zAcfDh8v8M7VQGuMVSZ81T7odNGpNYgueokKKzzfRcr7XxtUhc7kRurC_xW_Iski5RyIkMajnPnW-cirHcVrsRRJmhcDQVfrOlg-CPaxJdBHgueh2nUZhPCSUy2eVyXlIA0oP3noBOh6Ylwtfxa_sUGDcUN1v8349yEG10wzbZa9N-CFVvdhvVeqIJ1fusOfNtibepQy98haxt20A0Y9ulUzcZsH_3muLuQygb9cTWG8TzbPqvUuNQvGSmbNnoaWLy5tcz3i-OWLc6VvwufL-WX78FaNansfWAuoHivCH2r0tjaRLnYBGli_dyFiUmUB6_6Lpe6S8FOX_5d4lSMMCIJI3KJEQ9eLApM2-wjF7_KEEOy80D1n4_l1DgP3px7pbG7bOwue7tLsvsFTUQebPTwW9ayxJ4HTxeP0UnRzpOq7OSklpQDk0LvSDz4dxVP4NrO4cc9ubc7Gj6E69R2u961AWvz2Yl9BFf1z3lZzx43I4_Bl8tG82-Yc27k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Culture-Based+Particle+Swarm+Optimization+Framework+for+Dynamic%2C+Constrained+Multi-Objective+Optimization&rft.jtitle=International+journal+of+swarm+intelligence+research&rft.au=Yen%2C+Gary+G&rft.au=Kadkol%2C+Ashwin+A&rft.date=2012-01-01&rft.issn=1947-9263&rft.volume=3&rft.issue=1&rft.spage=1&rft.epage=29&rft_id=info:doi/10.4018%2Fjsir.2012010101&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-9263&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-9263&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-9263&client=summon