A Variable Importance-Based Differential Evolution for Large-Scale Multiobjective Optimization

Large-scale multiobjective optimization problems (LMOPs) bring significant challenges for traditional evolutionary operators, as their search capability cannot efficiently handle the huge decision space. Some newly designed search methods for LMOPs usually classify all variables into different group...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics Jg. 52; H. 12; S. 13048 - 13062
Hauptverfasser: Liu, Songbai, Lin, Qiuzhen, Tian, Ye, Tan, Kay Chen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2267, 2168-2275, 2168-2275
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Large-scale multiobjective optimization problems (LMOPs) bring significant challenges for traditional evolutionary operators, as their search capability cannot efficiently handle the huge decision space. Some newly designed search methods for LMOPs usually classify all variables into different groups and then optimize the variables in the same group with the same manner, which can speed up the population's convergence. Following this research direction, this article suggests a differential evolution (DE) algorithm that favors searching the variables with higher importance to the solving of LMOPs. The importance of each variable to the target LMOP is quantized and then all variables are categorized into different groups based on their importance. The variable groups with higher importance are allocated with more computational resources using DE. In this way, the proposed method can efficiently generate offspring in a low-dimensional search subspace formed by more important variables, which can significantly speed up the convergence. During the evolutionary process, this search subspace for DE will be expanded gradually, which can strike a good balance between exploration and exploitation in tackling LMOPs. Finally, the experiments validate that our proposed algorithm can perform better than several state-of-the-art evolutionary algorithms for solving various benchmark LMOPs.
AbstractList Large-scale multiobjective optimization problems (LMOPs) bring significant challenges for traditional evolutionary operators, as their search capability cannot efficiently handle the huge decision space. Some newly designed search methods for LMOPs usually classify all variables into different groups and then optimize the variables in the same group with the same manner, which can speed up the population's convergence. Following this research direction, this article suggests a differential evolution (DE) algorithm that favors searching the variables with higher importance to the solving of LMOPs. The importance of each variable to the target LMOP is quantized and then all variables are categorized into different groups based on their importance. The variable groups with higher importance are allocated with more computational resources using DE. In this way, the proposed method can efficiently generate offspring in a low-dimensional search subspace formed by more important variables, which can significantly speed up the convergence. During the evolutionary process, this search subspace for DE will be expanded gradually, which can strike a good balance between exploration and exploitation in tackling LMOPs. Finally, the experiments validate that our proposed algorithm can perform better than several state-of-the-art evolutionary algorithms for solving various benchmark LMOPs.
Large-scale multiobjective optimization problems (LMOPs) bring significant challenges for traditional evolutionary operators, as their search capability cannot efficiently handle the huge decision space. Some newly designed search methods for LMOPs usually classify all variables into different groups and then optimize the variables in the same group with the same manner, which can speed up the population's convergence. Following this research direction, this article suggests a differential evolution (DE) algorithm that favors searching the variables with higher importance to the solving of LMOPs. The importance of each variable to the target LMOP is quantized and then all variables are categorized into different groups based on their importance. The variable groups with higher importance are allocated with more computational resources using DE. In this way, the proposed method can efficiently generate offspring in a low-dimensional search subspace formed by more important variables, which can significantly speed up the convergence. During the evolutionary process, this search subspace for DE will be expanded gradually, which can strike a good balance between exploration and exploitation in tackling LMOPs. Finally, the experiments validate that our proposed algorithm can perform better than several state-of-the-art evolutionary algorithms for solving various benchmark LMOPs.Large-scale multiobjective optimization problems (LMOPs) bring significant challenges for traditional evolutionary operators, as their search capability cannot efficiently handle the huge decision space. Some newly designed search methods for LMOPs usually classify all variables into different groups and then optimize the variables in the same group with the same manner, which can speed up the population's convergence. Following this research direction, this article suggests a differential evolution (DE) algorithm that favors searching the variables with higher importance to the solving of LMOPs. The importance of each variable to the target LMOP is quantized and then all variables are categorized into different groups based on their importance. The variable groups with higher importance are allocated with more computational resources using DE. In this way, the proposed method can efficiently generate offspring in a low-dimensional search subspace formed by more important variables, which can significantly speed up the convergence. During the evolutionary process, this search subspace for DE will be expanded gradually, which can strike a good balance between exploration and exploitation in tackling LMOPs. Finally, the experiments validate that our proposed algorithm can perform better than several state-of-the-art evolutionary algorithms for solving various benchmark LMOPs.
Author Liu, Songbai
Tan, Kay Chen
Tian, Ye
Lin, Qiuzhen
Author_xml – sequence: 1
  givenname: Songbai
  orcidid: 0000-0003-1048-4486
  surname: Liu
  fullname: Liu, Songbai
  email: songbai209@qq.com
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong, SAR, China
– sequence: 2
  givenname: Qiuzhen
  orcidid: 0000-0003-2415-0401
  surname: Lin
  fullname: Lin, Qiuzhen
  email: qiuzhlin@szu.edu.cn
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 3
  givenname: Ye
  orcidid: 0000-0002-3487-5126
  surname: Tian
  fullname: Tian, Ye
  organization: Key Laboratory of Intelligent Computing and Signal Processing of the Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
– sequence: 4
  givenname: Kay Chen
  orcidid: 0000-0002-6802-2463
  surname: Tan
  fullname: Tan, Kay Chen
  email: kctan@polyu.edu.hk
  organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong, SAR, China
BookMark eNp9kD1rHDEQhkVw8PcPCG4W3KTZiz529VHaZzsxXHARO5DGYk47a3Tsrc6S1pD8-uhyxoWLTKNheJ7R8B6RvTGMSMgnRmeMUfPlfv7rcsYpZzNBjWZafiCHnEldc67avbdeqgNymtKKltJlZPQ-ORBNQ6Vp9SF5vKh-QvSwHLC6XW9CzDA6rC8hYVdd-b7HiGP2MFTXL2GYsg9j1YdYLSA-Yf3DQfG-T0OZL1fosn_B6m6T_dr_gS17Qj72MCQ8fX2PycPN9f38W724-3o7v1jUTnCZa6kk9o3odAdKOt31YAzTbukaybQoZzOpwHBoOm5QL43mjDoQsmsEMwx6cUw-7_ZuYnieMGW79snhMMCIYUqWt5JrbpRUBT1_h67CFMdyneVKqFaW5U2h2I5yMaQUsbeb6NcQf1tG7TZ_u83fbvO3r_kXR71znM__YsgR_PBf82xnekR8-8m0TFGhxV_HCJIp
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TCYB_2023_3287596
crossref_primary_10_1109_TSMC_2021_3131312
crossref_primary_10_1007_s12293_025_00438_6
crossref_primary_10_1007_s40747_022_00650_8
crossref_primary_10_1109_TCYB_2022_3225341
crossref_primary_10_1016_j_engappai_2025_110089
crossref_primary_10_1109_TETCI_2024_3369629
crossref_primary_10_1007_s40747_025_01835_7
crossref_primary_10_1109_TCYB_2025_3531449
crossref_primary_10_1016_j_comnet_2025_111374
crossref_primary_10_1007_s10586_024_04275_z
crossref_primary_10_1016_j_swevo_2023_101397
crossref_primary_10_1016_j_ins_2025_121973
crossref_primary_10_1016_j_swevo_2025_101931
crossref_primary_10_1016_j_swevo_2025_102149
crossref_primary_10_1016_j_eswa_2025_129410
crossref_primary_10_1016_j_swevo_2025_102089
crossref_primary_10_1109_TEVC_2024_3355221
crossref_primary_10_1109_TSMC_2024_3446822
crossref_primary_10_3390_rs15174178
crossref_primary_10_1016_j_eswa_2025_129328
crossref_primary_10_1016_j_swevo_2023_101393
crossref_primary_10_1109_TCYB_2023_3265652
crossref_primary_10_1007_s00521_023_08505_0
crossref_primary_10_1109_TETCI_2025_3537916
crossref_primary_10_1162_evco_a_00354
crossref_primary_10_1007_s40747_024_01620_y
crossref_primary_10_1109_TEVC_2022_3155593
crossref_primary_10_1016_j_swevo_2024_101606
crossref_primary_10_1038_s41598_025_91245_z
crossref_primary_10_1007_s40747_022_00937_w
crossref_primary_10_1007_s40747_023_00990_z
crossref_primary_10_1016_j_swevo_2024_101622
crossref_primary_10_1016_j_ins_2024_120411
crossref_primary_10_1016_j_ins_2024_120950
crossref_primary_10_1016_j_ins_2024_121347
crossref_primary_10_1016_j_eswa_2023_122575
crossref_primary_10_1016_j_swevo_2025_101863
crossref_primary_10_1016_j_swevo_2023_101466
crossref_primary_10_1109_TEVC_2021_3130835
Cites_doi 10.1109/TEVC.2003.810761
10.1109/TEVC.2015.2395073
10.1109/TEVC.2019.2896002
10.1016/j.ins.2020.02.066
10.1016/j.ins.2018.10.005
10.1109/TEVC.2018.2875430
10.1109/TEVC.2015.2504730
10.1109/MCI.2017.2742868
10.1109/TCYB.2019.2914060
10.1109/CEC48606.2020.9185876
10.1109/TEVC.2016.2600642
10.1109/TEVC.2018.2865931
10.1016/j.advengsoft.2011.05.014
10.1016/j.asoc.2020.106120
10.1016/j.swevo.2020.100684
10.1016/j.swevo.2020.100697
10.1109/TCYB.2019.2906383
10.1109/TCYB.2018.2849343
10.1109/CEC.2010.5585979
10.1109/TEVC.2017.2704782
10.1109/ICIST.2013.6747683
10.1109/TEVC.2015.2420112
10.1109/TCYB.2020.2979930
10.1109/TEVC.2020.2985672
10.1109/TEVC.2020.3009390
10.1109/CEC.2016.7743831
10.1109/TCYB.2016.2600577
10.1145/2908961.2908979
10.1109/TCYB.2020.2985081
10.1109/TEVC.2015.2455812
10.1109/CEC48606.2020.9185846
10.1109/TCYB.2019.2932451
10.1109/CEC48606.2020.9185553
10.1109/TEVC.2018.2866927
10.1109/TEVC.2007.892759
10.1016/j.ins.2008.02.017
10.1016/j.swevo.2019.02.010
10.1109/TEVC.2018.2868770
10.1007/s00500-008-0323-y
10.1109/TEVC.2019.2918140
10.1109/TEVC.2018.2881153
10.1109/TEVC.2017.2672689
10.1109/TEVC.2020.2964705
10.1109/CEC.2013.6557903
10.1007/s00521-020-04779-w
10.1109/MCDM.2009.4938830
10.1109/4235.996017
10.1109/TEVC.2008.925798
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2021.3098186
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Computer Science
EISSN 2168-2275
EndPage 13062
ExternalDocumentID 10_1109_TCYB_2021_3098186
9517038
Genre orig-research
GrantInformation_xml – fundername: Research Grants Council of the Hong Kong, SAR, China
  grantid: PolyU11202418; PolyU11209219
  funderid: 10.13039/501100002920
– fundername: Shenzhen Scientific Research and Development Funding Program
  grantid: JCYJ20190808164211203
  funderid: 10.13039/501100017622
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 61876162; 61876110
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Project, Ministry of Science and Technology, China
  grantid: 2018AAA0101301
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c326t-676ef43d8da76c8dfa9918cbc46183816167a92a4d29e8b98210ca36d43191af3
IEDL.DBID RIE
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732182600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sun Sep 28 12:22:25 EDT 2025
Sun Nov 09 07:08:30 EST 2025
Sat Nov 29 02:02:34 EST 2025
Tue Nov 18 22:28:57 EST 2025
Wed Aug 27 02:14:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-676ef43d8da76c8dfa9918cbc46183816167a92a4d29e8b98210ca36d43191af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1048-4486
0000-0002-6802-2463
0000-0002-3487-5126
0000-0003-2415-0401
PMID 34406958
PQID 2737568214
PQPubID 85422
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TCYB_2021_3098186
ieee_primary_9517038
proquest_miscellaneous_2562829767
proquest_journals_2737568214
crossref_primary_10_1109_TCYB_2021_3098186
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
he (ref28) 2020
ref14
ref11
ref17
ref16
ref19
ref18
cheng (ref48) 2017; 12
ref51
ref50
ref46
ref45
ref47
ref42
ref41
ref44
ref43
deb (ref10) 1995; 9
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ma (ref15) 2021
ref29
References_xml – ident: ref45
  doi: 10.1109/TEVC.2003.810761
– ident: ref44
  doi: 10.1109/TEVC.2015.2395073
– year: 2020
  ident: ref28
  article-title: Adaptive offspring generation for evolutionary large-scale multiobjective optimization
  publication-title: IEEE Trans Syst Man Cybern Syst
– year: 2021
  ident: ref15
  article-title: An adaptive localized decision variable analysis approach to large-scale multiobjective and many-objective optimization
  publication-title: IEEE Trans Cybern
– ident: ref31
  doi: 10.1109/TEVC.2019.2896002
– ident: ref16
  doi: 10.1016/j.ins.2020.02.066
– ident: ref17
  doi: 10.1016/j.ins.2018.10.005
– volume: 9
  start-page: 115
  year: 1995
  ident: ref10
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– ident: ref14
  doi: 10.1109/TEVC.2018.2875430
– ident: ref46
  doi: 10.1109/TEVC.2015.2504730
– volume: 12
  start-page: 73
  year: 2017
  ident: ref48
  article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]
  publication-title: IEEE Comput Intell Mag
  doi: 10.1109/MCI.2017.2742868
– ident: ref41
  doi: 10.1109/TCYB.2019.2914060
– ident: ref19
  doi: 10.1109/CEC48606.2020.9185876
– ident: ref40
  doi: 10.1109/TEVC.2016.2600642
– ident: ref6
  doi: 10.1109/TEVC.2018.2865931
– ident: ref47
  doi: 10.1016/j.advengsoft.2011.05.014
– ident: ref24
  doi: 10.1016/j.asoc.2020.106120
– ident: ref25
  doi: 10.1016/j.swevo.2020.100684
– ident: ref18
  doi: 10.1016/j.swevo.2020.100697
– ident: ref27
  doi: 10.1109/TCYB.2019.2906383
– ident: ref11
  doi: 10.1109/TCYB.2018.2849343
– ident: ref36
  doi: 10.1109/CEC.2010.5585979
– ident: ref32
  doi: 10.1109/TEVC.2017.2704782
– ident: ref37
  doi: 10.1109/ICIST.2013.6747683
– ident: ref2
  doi: 10.1109/TEVC.2015.2420112
– ident: ref51
  doi: 10.1109/TCYB.2020.2979930
– ident: ref42
  doi: 10.1109/TEVC.2020.2985672
– ident: ref38
  doi: 10.1109/TEVC.2020.3009390
– ident: ref23
  doi: 10.1109/CEC.2016.7743831
– ident: ref43
  doi: 10.1109/TCYB.2016.2600577
– ident: ref34
  doi: 10.1145/2908961.2908979
– ident: ref50
  doi: 10.1109/TCYB.2020.2985081
– ident: ref39
  doi: 10.1109/TEVC.2015.2455812
– ident: ref22
  doi: 10.1109/CEC48606.2020.9185846
– ident: ref9
  doi: 10.1109/TCYB.2019.2932451
– ident: ref26
  doi: 10.1109/CEC48606.2020.9185553
– ident: ref7
  doi: 10.1109/TEVC.2018.2866927
– ident: ref5
  doi: 10.1109/TEVC.2007.892759
– ident: ref35
  doi: 10.1016/j.ins.2008.02.017
– ident: ref8
  doi: 10.1016/j.swevo.2019.02.010
– ident: ref33
  doi: 10.1109/TEVC.2018.2868770
– ident: ref49
  doi: 10.1007/s00500-008-0323-y
– ident: ref21
  doi: 10.1109/TEVC.2019.2918140
– ident: ref4
  doi: 10.1109/TEVC.2018.2881153
– ident: ref30
  doi: 10.1109/TEVC.2017.2672689
– ident: ref3
  doi: 10.1109/TEVC.2020.2964705
– ident: ref29
  doi: 10.1109/CEC.2013.6557903
– ident: ref20
  doi: 10.1007/s00521-020-04779-w
– ident: ref13
  doi: 10.1109/MCDM.2009.4938830
– ident: ref1
  doi: 10.1109/4235.996017
– ident: ref12
  doi: 10.1109/TEVC.2008.925798
SSID ssj0000816898
Score 2.5238986
Snippet Large-scale multiobjective optimization problems (LMOPs) bring significant challenges for traditional evolutionary operators, as their search capability cannot...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13048
SubjectTerms Computer science
Convergence
Cybernetics
Differential evolution (DE)
Evolutionary algorithms
Evolutionary computation
large-scale optimization
Linear programming
multiobjective optimization
Multiple objective analysis
Optimization
Research and development
Search algorithms
Search methods
Search problems
variable grouping
Variables
Title A Variable Importance-Based Differential Evolution for Large-Scale Multiobjective Optimization
URI https://ieeexplore.ieee.org/document/9517038
https://www.proquest.com/docview/2737568214
https://www.proquest.com/docview/2562829767
Volume 52
WOSCitedRecordID wos000732182600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD44EdmLc15wXkYEH1SMdm2Wy6ObisKYghfmiyVtU1B0k91-vydZVgRF8C3QtLQ9t-8kOecDOJCcKR0mEZWaKcoMR5NCtaJoSSpHgIxBx3XX74huV_Z66m4BTopaGGOMO3xmTu3Q7eVng3Ril8rOEA2ggsoSlITgs1qtYj3FEUg46tsQBxRRhfCbmI1AnT20n1uYDIaN0yhQtolbGZYjZqs-Ldf7t4jkKFZ--GUXbK4q_3vNVVjxoJKcz7SgCgumvwaVOWED8fa7BlU_GpFD3276aB1ezskTJsy2hIrcfDg4jlNoC8NbRi48fwr6gXdyOfV6ShDpko49Q07vUcaGuDLeQfI2857kFv3Qhy_w3IDHq8uH9jX1rAs0RSg3plxwk7Mok5kWPJVZrhFCyjRJGUfzx7_c4EKrULMsVEYmSmLSmOqIZwhFVEPn0SYs9gd9swXEmFDlnAUy100WskTyxAQZyzXjXOVRVINg_ufj1Lckt8wY77FLTQIVW7nFVm6xl1sNjotbPmf9OP6avG6lU0z0gqnB7ly8sbfYUYwwTjQ5fgyrwX5xGW3NbqDovhlMcA6CRVuKzMX270_egXJoyyPccZddWBwPJ2YPltLp-HU0rKPa9mTdqe0XyRLl1A
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54Q31xzgvOawQfVIx2aZYmj142FOcUnKIvlrRNQdFN3Obv9yTLiqAIvgWalrbn9p0k53wAO1JwpVkSUqm5otwINClUK4qWpHIEyBh0XHf9ZtRqyYcHdTMGB0UtjDHGHT4zh3bo9vKzbjqwS2VHiAZQQeU4TNY4Z8GwWqtYUXEUEo78luGAIq6I_DZmNVBH7dPHE0wHWfUwDJRt4zYL0yG3dZ-W7f1bTHIkKz88sws3jdL_XnQe5jysJMdDPSjDmOksQGlE2UC8BS9A2Y96ZNc3nN5bhKdjco8psy2iIhdvDpDjFHqCAS4jZ55BBT3BK6l_ek0liHVJ054ip7coZUNcIW83eRn6T3KNnujNl3guwV2j3j49p553gaYI5vpURMLkPMxkpiORyizXCCJlmqRcoAPAv1wVkVZM84wpIxMlMW1MdSgyBCOqqvNwGSY63Y5ZAWIMU7nggcx1jTOeSJGYIOO55kKoPAwrEIz-fJz6puSWG-M1dslJoGIrt9jKLfZyq8B-ccv7sCPHX5MXrXSKiV4wFVgfiTf2NtuLEchFNYEfwyuwXVxGa7NbKLpjugOcg3DRFiOLaPX3J2_BzHn7qhk3L1qXazDLbLGEO_yyDhP9j4HZgKn0s__c-9h0yvsFeMPoMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Variable+Importance-Based+Differential+Evolution+for+Large-Scale+Multiobjective+Optimization&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Liu%2C+Songbai&rft.au=Lin%2C+Qiuzhen&rft.au=Tian%2C+Ye&rft.au=Kay+Chen+Tan&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=12&rft.spage=13048&rft_id=info:doi/10.1109%2FTCYB.2021.3098186&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon