A Variable Importance-Based Differential Evolution for Large-Scale Multiobjective Optimization
Large-scale multiobjective optimization problems (LMOPs) bring significant challenges for traditional evolutionary operators, as their search capability cannot efficiently handle the huge decision space. Some newly designed search methods for LMOPs usually classify all variables into different group...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on cybernetics Jg. 52; H. 12; S. 13048 - 13062 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Piscataway
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Large-scale multiobjective optimization problems (LMOPs) bring significant challenges for traditional evolutionary operators, as their search capability cannot efficiently handle the huge decision space. Some newly designed search methods for LMOPs usually classify all variables into different groups and then optimize the variables in the same group with the same manner, which can speed up the population's convergence. Following this research direction, this article suggests a differential evolution (DE) algorithm that favors searching the variables with higher importance to the solving of LMOPs. The importance of each variable to the target LMOP is quantized and then all variables are categorized into different groups based on their importance. The variable groups with higher importance are allocated with more computational resources using DE. In this way, the proposed method can efficiently generate offspring in a low-dimensional search subspace formed by more important variables, which can significantly speed up the convergence. During the evolutionary process, this search subspace for DE will be expanded gradually, which can strike a good balance between exploration and exploitation in tackling LMOPs. Finally, the experiments validate that our proposed algorithm can perform better than several state-of-the-art evolutionary algorithms for solving various benchmark LMOPs. |
|---|---|
| AbstractList | Large-scale multiobjective optimization problems (LMOPs) bring significant challenges for traditional evolutionary operators, as their search capability cannot efficiently handle the huge decision space. Some newly designed search methods for LMOPs usually classify all variables into different groups and then optimize the variables in the same group with the same manner, which can speed up the population's convergence. Following this research direction, this article suggests a differential evolution (DE) algorithm that favors searching the variables with higher importance to the solving of LMOPs. The importance of each variable to the target LMOP is quantized and then all variables are categorized into different groups based on their importance. The variable groups with higher importance are allocated with more computational resources using DE. In this way, the proposed method can efficiently generate offspring in a low-dimensional search subspace formed by more important variables, which can significantly speed up the convergence. During the evolutionary process, this search subspace for DE will be expanded gradually, which can strike a good balance between exploration and exploitation in tackling LMOPs. Finally, the experiments validate that our proposed algorithm can perform better than several state-of-the-art evolutionary algorithms for solving various benchmark LMOPs. Large-scale multiobjective optimization problems (LMOPs) bring significant challenges for traditional evolutionary operators, as their search capability cannot efficiently handle the huge decision space. Some newly designed search methods for LMOPs usually classify all variables into different groups and then optimize the variables in the same group with the same manner, which can speed up the population's convergence. Following this research direction, this article suggests a differential evolution (DE) algorithm that favors searching the variables with higher importance to the solving of LMOPs. The importance of each variable to the target LMOP is quantized and then all variables are categorized into different groups based on their importance. The variable groups with higher importance are allocated with more computational resources using DE. In this way, the proposed method can efficiently generate offspring in a low-dimensional search subspace formed by more important variables, which can significantly speed up the convergence. During the evolutionary process, this search subspace for DE will be expanded gradually, which can strike a good balance between exploration and exploitation in tackling LMOPs. Finally, the experiments validate that our proposed algorithm can perform better than several state-of-the-art evolutionary algorithms for solving various benchmark LMOPs.Large-scale multiobjective optimization problems (LMOPs) bring significant challenges for traditional evolutionary operators, as their search capability cannot efficiently handle the huge decision space. Some newly designed search methods for LMOPs usually classify all variables into different groups and then optimize the variables in the same group with the same manner, which can speed up the population's convergence. Following this research direction, this article suggests a differential evolution (DE) algorithm that favors searching the variables with higher importance to the solving of LMOPs. The importance of each variable to the target LMOP is quantized and then all variables are categorized into different groups based on their importance. The variable groups with higher importance are allocated with more computational resources using DE. In this way, the proposed method can efficiently generate offspring in a low-dimensional search subspace formed by more important variables, which can significantly speed up the convergence. During the evolutionary process, this search subspace for DE will be expanded gradually, which can strike a good balance between exploration and exploitation in tackling LMOPs. Finally, the experiments validate that our proposed algorithm can perform better than several state-of-the-art evolutionary algorithms for solving various benchmark LMOPs. |
| Author | Liu, Songbai Tan, Kay Chen Tian, Ye Lin, Qiuzhen |
| Author_xml | – sequence: 1 givenname: Songbai orcidid: 0000-0003-1048-4486 surname: Liu fullname: Liu, Songbai email: songbai209@qq.com organization: Department of Computer Science, City University of Hong Kong, Hong Kong, SAR, China – sequence: 2 givenname: Qiuzhen orcidid: 0000-0003-2415-0401 surname: Lin fullname: Lin, Qiuzhen email: qiuzhlin@szu.edu.cn organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 3 givenname: Ye orcidid: 0000-0002-3487-5126 surname: Tian fullname: Tian, Ye organization: Key Laboratory of Intelligent Computing and Signal Processing of the Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China – sequence: 4 givenname: Kay Chen orcidid: 0000-0002-6802-2463 surname: Tan fullname: Tan, Kay Chen email: kctan@polyu.edu.hk organization: Department of Computing, The Hong Kong Polytechnic University, Hong Kong, SAR, China |
| BookMark | eNp9kD1rHDEQhkVw8PcPCG4W3KTZiz529VHaZzsxXHARO5DGYk47a3Tsrc6S1pD8-uhyxoWLTKNheJ7R8B6RvTGMSMgnRmeMUfPlfv7rcsYpZzNBjWZafiCHnEldc67avbdeqgNymtKKltJlZPQ-ORBNQ6Vp9SF5vKh-QvSwHLC6XW9CzDA6rC8hYVdd-b7HiGP2MFTXL2GYsg9j1YdYLSA-Yf3DQfG-T0OZL1fosn_B6m6T_dr_gS17Qj72MCQ8fX2PycPN9f38W724-3o7v1jUTnCZa6kk9o3odAdKOt31YAzTbukaybQoZzOpwHBoOm5QL43mjDoQsmsEMwx6cUw-7_ZuYnieMGW79snhMMCIYUqWt5JrbpRUBT1_h67CFMdyneVKqFaW5U2h2I5yMaQUsbeb6NcQf1tG7TZ_u83fbvO3r_kXR71znM__YsgR_PBf82xnekR8-8m0TFGhxV_HCJIp |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1109_TCYB_2023_3287596 crossref_primary_10_1109_TSMC_2021_3131312 crossref_primary_10_1007_s12293_025_00438_6 crossref_primary_10_1007_s40747_022_00650_8 crossref_primary_10_1109_TCYB_2022_3225341 crossref_primary_10_1016_j_engappai_2025_110089 crossref_primary_10_1109_TETCI_2024_3369629 crossref_primary_10_1007_s40747_025_01835_7 crossref_primary_10_1109_TCYB_2025_3531449 crossref_primary_10_1016_j_comnet_2025_111374 crossref_primary_10_1007_s10586_024_04275_z crossref_primary_10_1016_j_swevo_2023_101397 crossref_primary_10_1016_j_ins_2025_121973 crossref_primary_10_1016_j_swevo_2025_101931 crossref_primary_10_1016_j_swevo_2025_102149 crossref_primary_10_1016_j_eswa_2025_129410 crossref_primary_10_1016_j_swevo_2025_102089 crossref_primary_10_1109_TEVC_2024_3355221 crossref_primary_10_1109_TSMC_2024_3446822 crossref_primary_10_3390_rs15174178 crossref_primary_10_1016_j_eswa_2025_129328 crossref_primary_10_1016_j_swevo_2023_101393 crossref_primary_10_1109_TCYB_2023_3265652 crossref_primary_10_1007_s00521_023_08505_0 crossref_primary_10_1109_TETCI_2025_3537916 crossref_primary_10_1162_evco_a_00354 crossref_primary_10_1007_s40747_024_01620_y crossref_primary_10_1109_TEVC_2022_3155593 crossref_primary_10_1016_j_swevo_2024_101606 crossref_primary_10_1038_s41598_025_91245_z crossref_primary_10_1007_s40747_022_00937_w crossref_primary_10_1007_s40747_023_00990_z crossref_primary_10_1016_j_swevo_2024_101622 crossref_primary_10_1016_j_ins_2024_120411 crossref_primary_10_1016_j_ins_2024_120950 crossref_primary_10_1016_j_ins_2024_121347 crossref_primary_10_1016_j_eswa_2023_122575 crossref_primary_10_1016_j_swevo_2025_101863 crossref_primary_10_1016_j_swevo_2023_101466 crossref_primary_10_1109_TEVC_2021_3130835 |
| Cites_doi | 10.1109/TEVC.2003.810761 10.1109/TEVC.2015.2395073 10.1109/TEVC.2019.2896002 10.1016/j.ins.2020.02.066 10.1016/j.ins.2018.10.005 10.1109/TEVC.2018.2875430 10.1109/TEVC.2015.2504730 10.1109/MCI.2017.2742868 10.1109/TCYB.2019.2914060 10.1109/CEC48606.2020.9185876 10.1109/TEVC.2016.2600642 10.1109/TEVC.2018.2865931 10.1016/j.advengsoft.2011.05.014 10.1016/j.asoc.2020.106120 10.1016/j.swevo.2020.100684 10.1016/j.swevo.2020.100697 10.1109/TCYB.2019.2906383 10.1109/TCYB.2018.2849343 10.1109/CEC.2010.5585979 10.1109/TEVC.2017.2704782 10.1109/ICIST.2013.6747683 10.1109/TEVC.2015.2420112 10.1109/TCYB.2020.2979930 10.1109/TEVC.2020.2985672 10.1109/TEVC.2020.3009390 10.1109/CEC.2016.7743831 10.1109/TCYB.2016.2600577 10.1145/2908961.2908979 10.1109/TCYB.2020.2985081 10.1109/TEVC.2015.2455812 10.1109/CEC48606.2020.9185846 10.1109/TCYB.2019.2932451 10.1109/CEC48606.2020.9185553 10.1109/TEVC.2018.2866927 10.1109/TEVC.2007.892759 10.1016/j.ins.2008.02.017 10.1016/j.swevo.2019.02.010 10.1109/TEVC.2018.2868770 10.1007/s00500-008-0323-y 10.1109/TEVC.2019.2918140 10.1109/TEVC.2018.2881153 10.1109/TEVC.2017.2672689 10.1109/TEVC.2020.2964705 10.1109/CEC.2013.6557903 10.1007/s00521-020-04779-w 10.1109/MCDM.2009.4938830 10.1109/4235.996017 10.1109/TEVC.2008.925798 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2021.3098186 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Computer Science |
| EISSN | 2168-2275 |
| EndPage | 13062 |
| ExternalDocumentID | 10_1109_TCYB_2021_3098186 9517038 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Research Grants Council of the Hong Kong, SAR, China grantid: PolyU11202418; PolyU11209219 funderid: 10.13039/501100002920 – fundername: Shenzhen Scientific Research and Development Funding Program grantid: JCYJ20190808164211203 funderid: 10.13039/501100017622 – fundername: National Natural Science Foundation of China (NSFC) grantid: 61876162; 61876110 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Project, Ministry of Science and Technology, China grantid: 2018AAA0101301 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c326t-676ef43d8da76c8dfa9918cbc46183816167a92a4d29e8b98210ca36d43191af3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 56 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000732182600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sun Sep 28 12:22:25 EDT 2025 Sun Nov 09 07:08:30 EST 2025 Sat Nov 29 02:02:34 EST 2025 Tue Nov 18 22:28:57 EST 2025 Wed Aug 27 02:14:18 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c326t-676ef43d8da76c8dfa9918cbc46183816167a92a4d29e8b98210ca36d43191af3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1048-4486 0000-0002-6802-2463 0000-0002-3487-5126 0000-0003-2415-0401 |
| PMID | 34406958 |
| PQID | 2737568214 |
| PQPubID | 85422 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1109_TCYB_2021_3098186 ieee_primary_9517038 proquest_miscellaneous_2562829767 proquest_journals_2737568214 crossref_primary_10_1109_TCYB_2021_3098186 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-12-01 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 he (ref28) 2020 ref14 ref11 ref17 ref16 ref19 ref18 cheng (ref48) 2017; 12 ref51 ref50 ref46 ref45 ref47 ref42 ref41 ref44 ref43 deb (ref10) 1995; 9 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ma (ref15) 2021 ref29 |
| References_xml | – ident: ref45 doi: 10.1109/TEVC.2003.810761 – ident: ref44 doi: 10.1109/TEVC.2015.2395073 – year: 2020 ident: ref28 article-title: Adaptive offspring generation for evolutionary large-scale multiobjective optimization publication-title: IEEE Trans Syst Man Cybern Syst – year: 2021 ident: ref15 article-title: An adaptive localized decision variable analysis approach to large-scale multiobjective and many-objective optimization publication-title: IEEE Trans Cybern – ident: ref31 doi: 10.1109/TEVC.2019.2896002 – ident: ref16 doi: 10.1016/j.ins.2020.02.066 – ident: ref17 doi: 10.1016/j.ins.2018.10.005 – volume: 9 start-page: 115 year: 1995 ident: ref10 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst – ident: ref14 doi: 10.1109/TEVC.2018.2875430 – ident: ref46 doi: 10.1109/TEVC.2015.2504730 – volume: 12 start-page: 73 year: 2017 ident: ref48 article-title: PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum] publication-title: IEEE Comput Intell Mag doi: 10.1109/MCI.2017.2742868 – ident: ref41 doi: 10.1109/TCYB.2019.2914060 – ident: ref19 doi: 10.1109/CEC48606.2020.9185876 – ident: ref40 doi: 10.1109/TEVC.2016.2600642 – ident: ref6 doi: 10.1109/TEVC.2018.2865931 – ident: ref47 doi: 10.1016/j.advengsoft.2011.05.014 – ident: ref24 doi: 10.1016/j.asoc.2020.106120 – ident: ref25 doi: 10.1016/j.swevo.2020.100684 – ident: ref18 doi: 10.1016/j.swevo.2020.100697 – ident: ref27 doi: 10.1109/TCYB.2019.2906383 – ident: ref11 doi: 10.1109/TCYB.2018.2849343 – ident: ref36 doi: 10.1109/CEC.2010.5585979 – ident: ref32 doi: 10.1109/TEVC.2017.2704782 – ident: ref37 doi: 10.1109/ICIST.2013.6747683 – ident: ref2 doi: 10.1109/TEVC.2015.2420112 – ident: ref51 doi: 10.1109/TCYB.2020.2979930 – ident: ref42 doi: 10.1109/TEVC.2020.2985672 – ident: ref38 doi: 10.1109/TEVC.2020.3009390 – ident: ref23 doi: 10.1109/CEC.2016.7743831 – ident: ref43 doi: 10.1109/TCYB.2016.2600577 – ident: ref34 doi: 10.1145/2908961.2908979 – ident: ref50 doi: 10.1109/TCYB.2020.2985081 – ident: ref39 doi: 10.1109/TEVC.2015.2455812 – ident: ref22 doi: 10.1109/CEC48606.2020.9185846 – ident: ref9 doi: 10.1109/TCYB.2019.2932451 – ident: ref26 doi: 10.1109/CEC48606.2020.9185553 – ident: ref7 doi: 10.1109/TEVC.2018.2866927 – ident: ref5 doi: 10.1109/TEVC.2007.892759 – ident: ref35 doi: 10.1016/j.ins.2008.02.017 – ident: ref8 doi: 10.1016/j.swevo.2019.02.010 – ident: ref33 doi: 10.1109/TEVC.2018.2868770 – ident: ref49 doi: 10.1007/s00500-008-0323-y – ident: ref21 doi: 10.1109/TEVC.2019.2918140 – ident: ref4 doi: 10.1109/TEVC.2018.2881153 – ident: ref30 doi: 10.1109/TEVC.2017.2672689 – ident: ref3 doi: 10.1109/TEVC.2020.2964705 – ident: ref29 doi: 10.1109/CEC.2013.6557903 – ident: ref20 doi: 10.1007/s00521-020-04779-w – ident: ref13 doi: 10.1109/MCDM.2009.4938830 – ident: ref1 doi: 10.1109/4235.996017 – ident: ref12 doi: 10.1109/TEVC.2008.925798 |
| SSID | ssj0000816898 |
| Score | 2.5238986 |
| Snippet | Large-scale multiobjective optimization problems (LMOPs) bring significant challenges for traditional evolutionary operators, as their search capability cannot... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 13048 |
| SubjectTerms | Computer science Convergence Cybernetics Differential evolution (DE) Evolutionary algorithms Evolutionary computation large-scale optimization Linear programming multiobjective optimization Multiple objective analysis Optimization Research and development Search algorithms Search methods Search problems variable grouping Variables |
| Title | A Variable Importance-Based Differential Evolution for Large-Scale Multiobjective Optimization |
| URI | https://ieeexplore.ieee.org/document/9517038 https://www.proquest.com/docview/2737568214 https://www.proquest.com/docview/2562829767 |
| Volume | 52 |
| WOSCitedRecordID | wos000732182600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD44EdmLc15wXkYEH1SMdm2Wy6ObisKYghfmiyVtU1B0k91-vydZVgRF8C3QtLQ9t-8kOecDOJCcKR0mEZWaKcoMR5NCtaJoSSpHgIxBx3XX74huV_Z66m4BTopaGGOMO3xmTu3Q7eVng3Ril8rOEA2ggsoSlITgs1qtYj3FEUg46tsQBxRRhfCbmI1AnT20n1uYDIaN0yhQtolbGZYjZqs-Ldf7t4jkKFZ--GUXbK4q_3vNVVjxoJKcz7SgCgumvwaVOWED8fa7BlU_GpFD3276aB1ezskTJsy2hIrcfDg4jlNoC8NbRi48fwr6gXdyOfV6ShDpko49Q07vUcaGuDLeQfI2857kFv3Qhy_w3IDHq8uH9jX1rAs0RSg3plxwk7Mok5kWPJVZrhFCyjRJGUfzx7_c4EKrULMsVEYmSmLSmOqIZwhFVEPn0SYs9gd9swXEmFDlnAUy100WskTyxAQZyzXjXOVRVINg_ufj1Lckt8wY77FLTQIVW7nFVm6xl1sNjotbPmf9OP6avG6lU0z0gqnB7ly8sbfYUYwwTjQ5fgyrwX5xGW3NbqDovhlMcA6CRVuKzMX270_egXJoyyPccZddWBwPJ2YPltLp-HU0rKPa9mTdqe0XyRLl1A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54Q31xzgvOawQfVIx2aZYmj142FOcUnKIvlrRNQdFN3Obv9yTLiqAIvgWalrbn9p0k53wAO1JwpVkSUqm5otwINClUK4qWpHIEyBh0XHf9ZtRqyYcHdTMGB0UtjDHGHT4zh3bo9vKzbjqwS2VHiAZQQeU4TNY4Z8GwWqtYUXEUEo78luGAIq6I_DZmNVBH7dPHE0wHWfUwDJRt4zYL0yG3dZ-W7f1bTHIkKz88sws3jdL_XnQe5jysJMdDPSjDmOksQGlE2UC8BS9A2Y96ZNc3nN5bhKdjco8psy2iIhdvDpDjFHqCAS4jZ55BBT3BK6l_ek0liHVJ054ip7coZUNcIW83eRn6T3KNnujNl3guwV2j3j49p553gaYI5vpURMLkPMxkpiORyizXCCJlmqRcoAPAv1wVkVZM84wpIxMlMW1MdSgyBCOqqvNwGSY63Y5ZAWIMU7nggcx1jTOeSJGYIOO55kKoPAwrEIz-fJz6puSWG-M1dslJoGIrt9jKLfZyq8B-ccv7sCPHX5MXrXSKiV4wFVgfiTf2NtuLEchFNYEfwyuwXVxGa7NbKLpjugOcg3DRFiOLaPX3J2_BzHn7qhk3L1qXazDLbLGEO_yyDhP9j4HZgKn0s__c-9h0yvsFeMPoMw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Variable+Importance-Based+Differential+Evolution+for+Large-Scale+Multiobjective+Optimization&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Liu%2C+Songbai&rft.au=Lin%2C+Qiuzhen&rft.au=Tian%2C+Ye&rft.au=Kay+Chen+Tan&rft.date=2022-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=12&rft.spage=13048&rft_id=info:doi/10.1109%2FTCYB.2021.3098186&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |