Perturbation Analysis for Finite-Time Stability and Stabilization of Probabilistic Boolean Networks

This article analyzes the function perturbation impact on the finite-time stability and stabilization of the probabilistic Boolean networks (PBNs). First, the concept of stability in the distribution of PBNs is divided into two disjoint concepts, that is, finite-time stability with probability one (...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cybernetics Ročník 51; číslo 9; s. 4623 - 4633
Hlavní autoři: Li, Haitao, Yang, Xinrong, Wang, Shuling
Médium: Journal Article
Jazyk:angličtina
Vydáno: Piscataway IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article analyzes the function perturbation impact on the finite-time stability and stabilization of the probabilistic Boolean networks (PBNs). First, the concept of stability in the distribution of PBNs is divided into two disjoint concepts, that is, finite-time stability with probability one (FTSPO) and asymptotical stability with probability one (ASPO), and a new criterion is proposed for the verification of ASPO. Second, by constructing a parameterized set, it is shown that PBNs subject to function perturbation keep FTSPO if and only if the perturbed point does not belong to the parameterized set, while PBNs become ASPO if and only if the perturbed point belongs to the parameterized set. Third, as an application of perturbed stability analysis, the robust state-feedback stabilization is discussed for probabilistic Boolean control networks (PBCNs) with function perturbation. Finally, the obtained results are applied to a WNT5A network and lac operon in the Escherichia coli , respectively.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2020.3003055