Scheduling-Guided Automatic Processing of Massive Hyperspectral Image Classification on Cloud Computing Architectures

The large data volume and high algorithm complexity of hyperspectral image (HSI) problems have posed big challenges for efficient classification of massive HSI data repositories. Recently, cloud computing architectures have become more relevant to address the big computational challenges introduced...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on cybernetics Ročník 51; číslo 7; s. 3588 - 3601
Hlavní autori: Wu, Zebin, Sun, Jin, Zhang, Yi, Zhu, Yaoqin, Li, Jun, Plaza, Antonio, Benediktsson, Jon Atli, Wei, Zhihui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The large data volume and high algorithm complexity of hyperspectral image (HSI) problems have posed big challenges for efficient classification of massive HSI data repositories. Recently, cloud computing architectures have become more relevant to address the big computational challenges introduced in the HSI field. This article proposes an acceleration method for HSI classification that relies on scheduling metaheuristics to automatically and optimally distribute the workload of HSI applications across multiple computing resources on a cloud platform. By analyzing the procedure of a representative classification method, we first develop its distributed and parallel implementation based on the MapReduce mechanism on Apache Spark. The subtasks of the processing flow that can be processed in a distributed way are identified as divisible tasks. The optimal execution of this application on Spark is further formulated as a divisible scheduling framework that takes into account both task execution precedences and task divisibility when allocating the divisible and indivisible subtasks onto computing nodes. The formulated scheduling framework is an optimization procedure that searches for optimized task assignments and partition counts for divisible tasks. Two metaheuristic algorithms are developed to solve this divisible scheduling problem. The scheduling results provide an optimized solution to the automatic processing of HSI big data on clouds, improving the computational efficiency of HSI classification by exploring the parallelism during the parallel processing flow. Experimental results demonstrate that our scheduling-guided approach achieves remarkable speedups by facilitating the automatic processing of HSI classification on Spark, and is scalable to the increasing HSI data volume.
AbstractList The large data volume and high algorithm complexity of hyperspectral image (HSI) problems have posed big challenges for efficient classification of massive HSI data repositories. Recently, cloud computing architectures have become more relevant to address the big computational challenges introduced in the HSI field. This article proposes an acceleration method for HSI classification that relies on scheduling metaheuristics to automatically and optimally distribute the workload of HSI applications across multiple computing resources on a cloud platform. By analyzing the procedure of a representative classification method, we first develop its distributed and parallel implementation based on the MapReduce mechanism on Apache Spark. The subtasks of the processing flow that can be processed in a distributed way are identified as divisible tasks. The optimal execution of this application on Spark is further formulated as a divisible scheduling framework that takes into account both task execution precedences and task divisibility when allocating the divisible and indivisible subtasks onto computing nodes. The formulated scheduling framework is an optimization procedure that searches for optimized task assignments and partition counts for divisible tasks. Two metaheuristic algorithms are developed to solve this divisible scheduling problem. The scheduling results provide an optimized solution to the automatic processing of HSI big data on clouds, improving the computational efficiency of HSI classification by exploring the parallelism during the parallel processing flow. Experimental results demonstrate that our scheduling-guided approach achieves remarkable speedups by facilitating the automatic processing of HSI classification on Spark, and is scalable to the increasing HSI data volume.
The large data volume and high algorithm complexity of hyperspectral image (HSI) problems have posed big challenges for efficient classification of massive HSI data repositories. Recently, cloud computing architectures have become more relevant to address the big computational challenges introduced in the HSI field. This article proposes an acceleration method for HSI classification that relies on scheduling metaheuristics to automatically and optimally distribute the workload of HSI applications across multiple computing resources on a cloud platform. By analyzing the procedure of a representative classification method, we first develop its distributed and parallel implementation based on the MapReduce mechanism on Apache Spark. The subtasks of the processing flow that can be processed in a distributed way are identified as divisible tasks. The optimal execution of this application on Spark is further formulated as a divisible scheduling framework that takes into account both task execution precedences and task divisibility when allocating the divisible and indivisible subtasks onto computing nodes. The formulated scheduling framework is an optimization procedure that searches for optimized task assignments and partition counts for divisible tasks. Two metaheuristic algorithms are developed to solve this divisible scheduling problem. The scheduling results provide an optimized solution to the automatic processing of HSI big data on clouds, improving the computational efficiency of HSI classification by exploring the parallelism during the parallel processing flow. Experimental results demonstrate that our scheduling-guided approach achieves remarkable speedups by facilitating the automatic processing of HSI classification on Spark, and is scalable to the increasing HSI data volume.The large data volume and high algorithm complexity of hyperspectral image (HSI) problems have posed big challenges for efficient classification of massive HSI data repositories. Recently, cloud computing architectures have become more relevant to address the big computational challenges introduced in the HSI field. This article proposes an acceleration method for HSI classification that relies on scheduling metaheuristics to automatically and optimally distribute the workload of HSI applications across multiple computing resources on a cloud platform. By analyzing the procedure of a representative classification method, we first develop its distributed and parallel implementation based on the MapReduce mechanism on Apache Spark. The subtasks of the processing flow that can be processed in a distributed way are identified as divisible tasks. The optimal execution of this application on Spark is further formulated as a divisible scheduling framework that takes into account both task execution precedences and task divisibility when allocating the divisible and indivisible subtasks onto computing nodes. The formulated scheduling framework is an optimization procedure that searches for optimized task assignments and partition counts for divisible tasks. Two metaheuristic algorithms are developed to solve this divisible scheduling problem. The scheduling results provide an optimized solution to the automatic processing of HSI big data on clouds, improving the computational efficiency of HSI classification by exploring the parallelism during the parallel processing flow. Experimental results demonstrate that our scheduling-guided approach achieves remarkable speedups by facilitating the automatic processing of HSI classification on Spark, and is scalable to the increasing HSI data volume.
Author Li, Jun
Zhu, Yaoqin
Sun, Jin
Wu, Zebin
Benediktsson, Jon Atli
Zhang, Yi
Plaza, Antonio
Wei, Zhihui
Author_xml – sequence: 1
  givenname: Zebin
  orcidid: 0000-0002-7162-0202
  surname: Wu
  fullname: Wu, Zebin
  email: wuzb@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 2
  givenname: Jin
  orcidid: 0000-0003-4855-2499
  surname: Sun
  fullname: Sun, Jin
  email: sunj@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 3
  givenname: Yi
  orcidid: 0000-0002-9941-6377
  surname: Zhang
  fullname: Zhang, Yi
  email: yzhang@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 4
  givenname: Yaoqin
  surname: Zhu
  fullname: Zhu, Yaoqin
  email: zhuyaoqin@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
– sequence: 5
  givenname: Jun
  orcidid: 0000-0003-1613-9448
  surname: Li
  fullname: Li, Jun
  email: lijun48@mail.sysu.edu.cn
  organization: Guangdong Provincial Key Laboratory of Urbanization and Geo-Simulation, Center of Integrated Geographic Information Analysis, School of Geography and Planning, Sun Yat-sen University, Guangzhou, China
– sequence: 6
  givenname: Antonio
  orcidid: 0000-0002-9613-1659
  surname: Plaza
  fullname: Plaza, Antonio
  email: aplaza@unex.es
  organization: Department of Technology of Computers and Communications, Hyperspectral Computing Laboratory, University of Extremadura, Cáceres, Spain
– sequence: 7
  givenname: Jon Atli
  orcidid: 0000-0003-0621-9647
  surname: Benediktsson
  fullname: Benediktsson, Jon Atli
  email: benedikt@hi.is
  organization: Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland
– sequence: 8
  givenname: Zhihui
  orcidid: 0000-0002-4841-6051
  surname: Wei
  fullname: Wei, Zhihui
  email: gswei@njust.edu.cn
  organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
BookMark eNp9kctu1TAQhi1UREvpAyA2kdiwyakvsRMvDxG0lVqBRFmwsnyZtK6SONgxUt8eh1N10QWWJY88_zdjz_8WHc1hBoTeE7wjBMvz2_7X5x3FFO8YpkK07BU6oUR0NaUtP3qORXuMzlJ6wGV15Up2b9AxY4RIzvAJyj_sPbg8-vmuvsjegav2eQ2TXr2tvsdgIaWSq8JQ3egS_oHq8nGBmBawa9RjdTXpO6j6cUsO3hYuzFXZ_Riyq_owLXndCuyjvfdrgXKE9A69HvSY4OzpPEU_v3657S_r628XV_3-uraMirUWnFmBCcdOOCOpE50xYLAgBjNmnQEwYuBGE81xIzAeNHdDW77JpJFMDuwUfTrUXWL4nSGtavLJwjjqGUJOijZcNFgy2hXpxxfSh5DjXF6nKG8aKru2a4uKHFQ2hpQiDGqJftLxURGsNlvUZovabFFPthSmfcFYv_6bUxmgH_9LfjiQHgCeO0naNFhQ9hfpt5ui
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_JSTARS_2023_3344117
crossref_primary_10_1109_TGRS_2022_3162721
crossref_primary_10_3390_rs16224125
crossref_primary_10_1109_TGRS_2023_3273287
crossref_primary_10_1109_JSTARS_2022_3147195
crossref_primary_10_1016_j_microc_2022_108020
crossref_primary_10_3390_rs16183532
crossref_primary_10_1109_LGRS_2021_3077257
crossref_primary_10_1109_JPROC_2021_3063258
crossref_primary_10_1109_JSTARS_2020_3036896
crossref_primary_10_1109_TGRS_2025_3576656
crossref_primary_10_1109_TGRS_2023_3317033
crossref_primary_10_1109_TNNLS_2022_3232225
crossref_primary_10_1109_JSTARS_2021_3132164
crossref_primary_10_1109_TGRS_2022_3203488
crossref_primary_10_1109_ACCESS_2025_3542093
crossref_primary_10_1109_TNNLS_2024_3517535
crossref_primary_10_1109_TGRS_2022_3189015
crossref_primary_10_1145_3638771
crossref_primary_10_1109_TCSVT_2024_3425655
crossref_primary_10_1109_TGRS_2024_3407206
crossref_primary_10_1109_TIP_2025_3542276
crossref_primary_10_1109_TGRS_2023_3336664
crossref_primary_10_1109_LGRS_2021_3100061
crossref_primary_10_1109_TGRS_2022_3181466
crossref_primary_10_1109_TGRS_2021_3123651
crossref_primary_10_3390_electronics13163271
crossref_primary_10_3390_rs13020176
crossref_primary_10_1016_j_heliyon_2024_e35792
crossref_primary_10_1109_TGRS_2022_3189624
crossref_primary_10_3390_rs14092153
crossref_primary_10_1109_TGRS_2023_3339956
crossref_primary_10_1016_j_jss_2021_111123
crossref_primary_10_1109_TGRS_2022_3186916
crossref_primary_10_1109_TGRS_2021_3101848
crossref_primary_10_1109_JPROC_2021_3094335
crossref_primary_10_1109_TSC_2023_3293048
crossref_primary_10_1109_JSTARS_2021_3051210
crossref_primary_10_1088_1361_6501_ac99f4
crossref_primary_10_1109_TGRS_2021_3107352
crossref_primary_10_1109_TGRS_2024_3385316
crossref_primary_10_1109_JSTARS_2023_3344022
crossref_primary_10_1109_TGRS_2024_3349415
crossref_primary_10_1109_TGRS_2022_3188501
crossref_primary_10_1016_j_compag_2022_107561
crossref_primary_10_1016_j_future_2024_107572
crossref_primary_10_1109_JPROC_2021_3087029
crossref_primary_10_1109_LGRS_2024_3449087
crossref_primary_10_3390_smartcities8020051
crossref_primary_10_1109_TGRS_2022_3174276
crossref_primary_10_1109_TGRS_2024_3425428
crossref_primary_10_1109_TGRS_2024_3497976
crossref_primary_10_1109_TGRS_2023_3276175
crossref_primary_10_1109_TNNLS_2022_3212985
crossref_primary_10_3390_s23073550
crossref_primary_10_1109_TGRS_2025_3554711
crossref_primary_10_1155_2021_5530023
crossref_primary_10_3390_s21217271
crossref_primary_10_1016_j_sysarc_2024_103131
crossref_primary_10_1109_TGRS_2022_3211209
crossref_primary_10_1109_JSTARS_2021_3087588
crossref_primary_10_1109_TGRS_2023_3235819
crossref_primary_10_1007_s13369_023_08172_2
crossref_primary_10_1109_LGRS_2024_3474181
crossref_primary_10_1109_JSTARS_2022_3158761
crossref_primary_10_1109_TGRS_2024_3516817
crossref_primary_10_1109_TGRS_2024_3523384
Cites_doi 10.1109/TPDS.2009.62
10.1023/A:1020958815308
10.1109/TCYB.2018.2825598
10.1109/JSTARS.2019.2951725
10.1007/BF01009452
10.1007/s10732-010-9136-0
10.1109/TPWRS.2010.2059716
10.1109/JSTARS.2016.2542193
10.1109/LGRS.2015.2441631
10.1109/36.3001
10.1109/TEVC.2002.804320
10.1109/TCYB.2015.2453359
10.1109/TGRS.2004.831865
10.1109/WHISPERS.2010.5594963
10.1109/CVPR.2011.5995323
10.1109/TGRS.2011.2176341
10.1109/JPROC.2016.2598228
10.1109/TGRS.2011.2162649
10.1109/TCYB.2018.2810806
10.1109/JSTARS.2014.2341811
10.1109/TGRS.2013.2286195
10.1109/LGRS.2010.2046618
10.1109/TCYB.2016.2605044
10.1109/TCYB.2015.2484324
10.1109/TCYB.2018.2864670
10.1145/1327452.1327492
10.1109/JSTARS.2015.2413831
10.1016/j.sysarc.2020.101799
10.1109/TPDS.2010.204
10.1109/TGRS.2018.2890513
10.1109/TGRS.2017.2691906
10.1007/978-3-030-01449-0_21
10.1109/TPWRS.2008.2004743
10.1109/JSTARS.2015.2413931
10.1109/JSTARS.2016.2603120
10.1109/JSTARS.2019.2911987
10.1016/j.rse.2007.07.028
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2020.3026673
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 3601
ExternalDocumentID 10_1109_TCYB_2020_3026673
9244062
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province of China
  grantid: BK20180018
  funderid: 10.13039/501100004608
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 30917015104; 30919011103; 30919011402; 30920021132
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 61772274; 61872185
  funderid: 10.13039/501100001809
– fundername: European Union’s Horizon 2020 Research and Innovation Programme (EOXPOSURE)
  grantid: 734541
– fundername: Junta de Extremadura (Decreto 14/2018, de 6 de febrero, por el que se establecen las bases reguladoras de las ayudas para la realizacion de actividades de investigacion y desarrollo tecnologico, de divulgacion y de transferencia de conocimiento por los Grupos de Investigacion de Extremadura)
  grantid: GR18060
  funderid: 10.13039/501100014181
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c326t-653c60150d6db92d68bbeb061b033cdbeeb6f5ba1a504600fa5df708139b939f3
IEDL.DBID RIE
ISICitedReferencesCount 80
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000665001500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sat Sep 27 20:05:38 EDT 2025
Mon Jun 30 04:25:26 EDT 2025
Sat Nov 29 02:02:31 EST 2025
Tue Nov 18 22:27:55 EST 2025
Wed Aug 27 02:26:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-653c60150d6db92d68bbeb061b033cdbeeb6f5ba1a504600fa5df708139b939f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0621-9647
0000-0002-7162-0202
0000-0002-9613-1659
0000-0002-4841-6051
0000-0003-1613-9448
0000-0002-9941-6377
0000-0003-4855-2499
PMID 33119530
PQID 2544298787
PQPubID 85422
PageCount 14
ParticipantIDs proquest_miscellaneous_2456409328
crossref_primary_10_1109_TCYB_2020_3026673
ieee_primary_9244062
crossref_citationtrail_10_1109_TCYB_2020_3026673
proquest_journals_2544298787
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref36
ref31
ref30
magoules (ref24) 2012
ref33
ref11
ref10
kennedy (ref28) 2002
ref2
ref1
ref39
ref17
ref16
ref19
wu (ref14) 2015; 12
ref18
ref23
ref26
ref20
ref42
ref41
ref22
ref44
el-rewini (ref25) 2007
haut (ref32) 2017
xun (ref35) 2007; 34
ref21
ref43
ref27
ref29
ref8
ref7
zaharia (ref38) 2012
ref9
ref4
ref3
ryza (ref37) 2015
ref6
ref5
ref40
References_xml – start-page: 1063
  year: 2017
  ident: ref32
  article-title: Cloud implementation of logistic regression for hyperspectral image classification
  publication-title: Proc Int Conf Comput Math Methods Sci Eng
– ident: ref31
  doi: 10.1109/TPDS.2009.62
– volume: 34
  start-page: 18
  year: 2007
  ident: ref35
  article-title: Target detection algorithm in hyperspectral image based on CEM
  publication-title: Opto-Electron Eng
– ident: ref30
  doi: 10.1023/A:1020958815308
– ident: ref6
  doi: 10.1109/TCYB.2018.2825598
– ident: ref5
  doi: 10.1109/JSTARS.2019.2951725
– ident: ref27
  doi: 10.1007/BF01009452
– ident: ref29
  doi: 10.1007/s10732-010-9136-0
– year: 2012
  ident: ref24
  publication-title: Cloud Computing Data-Intensive Computing and Scheduling
– ident: ref41
  doi: 10.1109/TPWRS.2010.2059716
– ident: ref8
  doi: 10.1109/JSTARS.2016.2542193
– start-page: 1
  year: 2012
  ident: ref38
  article-title: Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing
  publication-title: Proc USENIX Conf Netw Syst Design Implement
– volume: 12
  start-page: 1973
  year: 2015
  ident: ref14
  article-title: GPU implementation of composite kernels for hyperspectral image classification
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2015.2441631
– ident: ref34
  doi: 10.1109/36.3001
– ident: ref40
  doi: 10.1109/TEVC.2002.804320
– ident: ref22
  doi: 10.1109/TCYB.2015.2453359
– ident: ref15
  doi: 10.1109/TGRS.2004.831865
– ident: ref44
  doi: 10.1109/WHISPERS.2010.5594963
– ident: ref36
  doi: 10.1109/CVPR.2011.5995323
– ident: ref17
  doi: 10.1109/TGRS.2011.2176341
– ident: ref7
  doi: 10.1109/JPROC.2016.2598228
– start-page: 1942
  year: 2002
  ident: ref28
  article-title: Particle swarm optimization
  publication-title: Proc Int Conf Neural Netw
– ident: ref19
  doi: 10.1109/TGRS.2011.2162649
– ident: ref21
  doi: 10.1109/TCYB.2018.2810806
– ident: ref4
  doi: 10.1109/JSTARS.2014.2341811
– ident: ref3
  doi: 10.1109/TGRS.2013.2286195
– ident: ref16
  doi: 10.1109/LGRS.2010.2046618
– ident: ref2
  doi: 10.1109/TCYB.2016.2605044
– ident: ref18
  doi: 10.1109/TCYB.2015.2484324
– ident: ref12
  doi: 10.1109/TCYB.2018.2864670
– ident: ref11
  doi: 10.1145/1327452.1327492
– ident: ref43
  doi: 10.1109/JSTARS.2015.2413831
– ident: ref39
  doi: 10.1016/j.sysarc.2020.101799
– ident: ref26
  doi: 10.1109/TPDS.2010.204
– ident: ref10
  doi: 10.1109/TGRS.2018.2890513
– ident: ref20
  doi: 10.1109/TGRS.2017.2691906
– ident: ref33
  doi: 10.1007/978-3-030-01449-0_21
– year: 2015
  ident: ref37
  publication-title: Advanced Analytics with Spark Patterns for Learning from Data at Scale
– ident: ref42
  doi: 10.1109/TPWRS.2008.2004743
– ident: ref23
  doi: 10.1109/JSTARS.2015.2413931
– ident: ref9
  doi: 10.1109/JSTARS.2016.2603120
– year: 2007
  ident: ref25
  publication-title: Task Scheduling in Parallel and Distributed Systems
– ident: ref1
  doi: 10.1109/JSTARS.2019.2911987
– ident: ref13
  doi: 10.1016/j.rse.2007.07.028
SSID ssj0000816898
Score 2.538855
Snippet The large data volume and high algorithm complexity of hyperspectral image (HSI) problems have posed big challenges for efficient classification of massive HSI...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3588
SubjectTerms Algorithms
Classification
Cloud computing
distributed and parallel processing
divisible task scheduling
Heuristic methods
hyperspectral image (HSI) classification
Hyperspectral imaging
Image classification
Optimization
Parallel processing
partitioning factor
Processor scheduling
Scheduling
Sparks
Task analysis
Task scheduling
Title Scheduling-Guided Automatic Processing of Massive Hyperspectral Image Classification on Cloud Computing Architectures
URI https://ieeexplore.ieee.org/document/9244062
https://www.proquest.com/docview/2544298787
https://www.proquest.com/docview/2456409328
Volume 51
WOSCitedRecordID wos000665001500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD644oMvu96WHVclgg8qdm2btGkex8EbqAgqjE8laVIRdLo40_39npPGIrgIQh8KTUPpl5xLzuUD2Ekkz7UVxBFmdSSETiJdaRWhKsuVjTWqOF8ofCGvrorxWF3PwUFfC-Oc88ln7g_d-li-baqWjsoO0VdA_YMC95uUsqvV6s9TPIGEp75N8SZCq0KGIGYSq8Pb0f0ROoMp-qjodOSS6HM4p3ZnlP78TiN5ipUPctkrm5MfX_vMJfgejEo27FbBMsy5yQosh207Zbuht_TeKrQ3CJKl7POH6LR9tM6yYTtrfN9WFooG8BlranaJZjWKQnaGnmpXkIlTsPNnFEDMU2lSkpHHleE1empayzqOCJpg-C5AMV2Du5Pj29FZFJgXogrNuVmUZ7zK6SyE6KZUavPCGGdQ9ZuY88oa50xeZ0YnOqPAalzrzNYSIeDKKK5q_hPmJ83E_QImhal5LqqCcyEyIwxabIXJalFotFZMMoD47e-XVWhLTuwYT6V3T2JVEnYlYVcG7Aaw37_yt-vJ8dngVUKoHxjAGcDGG8Rl2LXTktq1papAGTaA7f4x7jcKouiJa1ocQ_13YrR6i_X_z_wbFlPKe_EpvRswP3tp3SYsVP9mj9OXLVy642LLL91XNWjovQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS9xAFD6ILdSXtt5wW2tH8KGKcZPM5DKP61K74roIrqBPYSYzKYJuxN309_ecyRgERRDyEMhkCPlmzmXO5QPYizKeKiOII8yoQAgVBapUMkBVlkoTKlRxrlB4nE0m-fW1vFiCw64Wxlrrks_sEd26WL6py4aOyvroK6D-QYH7IREijtpqre5ExVFIOPLbGG8CtCsyH8aMQtmfDm-O0R2M0UtFtyPNiECHc2p4RgnQz3SSI1l5IZmdujn58r4P_QqfvVnJBu06WIUlO1uDVb9x5-yX7y69vw7NJcJkKP_8b_CnuTXWsEGzqF3nVubLBvAZqyt2joY1CkM2Ql-1LcnEKdjpPYog5sg0Kc3IIcvwGt7VjWEtSwRNMHgWophvwNXJ7-lwFHjuhaBEg24RpAkvUzoNIcIpGZs019pqVP465Lw02lqdVolWkUootBpWKjFVhhBwqSWXFd-E5Vk9s1vAMqErnooy51yIRAuNNluuk0rkCu0VHfUgfPr7RekbkxM_xl3hHJRQFoRdQdgVHrseHHSvPLRdOd4avE4IdQM9OD3YfoK48Pt2XlDDtljmKMV6sNs9xh1HYRQ1s3WDY6gDT4h2b_7t9Zl_wqfR9HxcjE8nZ99hJaYsGJfguw3Li8fG_oCP5b_F7fxxxy3g__iI6xw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scheduling-Guided+Automatic+Processing+of+Massive+Hyperspectral+Image+Classification+on+Cloud+Computing+Architectures&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wu%2C+Zebin&rft.au=Sun%2C+Jin&rft.au=Zhang%2C+Yi&rft.au=Zhu%2C+Yaoqin&rft.date=2021-07-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=51&rft.issue=7&rft.spage=3588&rft_id=info:doi/10.1109%2FTCYB.2020.3026673&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon