Scheduling-Guided Automatic Processing of Massive Hyperspectral Image Classification on Cloud Computing Architectures
The large data volume and high algorithm complexity of hyperspectral image (HSI) problems have posed big challenges for efficient classification of massive HSI data repositories. Recently, cloud computing architectures have become more relevant to address the big computational challenges introduced...
Uložené v:
| Vydané v: | IEEE transactions on cybernetics Ročník 51; číslo 7; s. 3588 - 3601 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Piscataway
IEEE
01.07.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The large data volume and high algorithm complexity of hyperspectral image (HSI) problems have posed big challenges for efficient classification of massive HSI data repositories. Recently, cloud computing architectures have become more relevant to address the big computational challenges introduced in the HSI field. This article proposes an acceleration method for HSI classification that relies on scheduling metaheuristics to automatically and optimally distribute the workload of HSI applications across multiple computing resources on a cloud platform. By analyzing the procedure of a representative classification method, we first develop its distributed and parallel implementation based on the MapReduce mechanism on Apache Spark. The subtasks of the processing flow that can be processed in a distributed way are identified as divisible tasks. The optimal execution of this application on Spark is further formulated as a divisible scheduling framework that takes into account both task execution precedences and task divisibility when allocating the divisible and indivisible subtasks onto computing nodes. The formulated scheduling framework is an optimization procedure that searches for optimized task assignments and partition counts for divisible tasks. Two metaheuristic algorithms are developed to solve this divisible scheduling problem. The scheduling results provide an optimized solution to the automatic processing of HSI big data on clouds, improving the computational efficiency of HSI classification by exploring the parallelism during the parallel processing flow. Experimental results demonstrate that our scheduling-guided approach achieves remarkable speedups by facilitating the automatic processing of HSI classification on Spark, and is scalable to the increasing HSI data volume. |
|---|---|
| AbstractList | The large data volume and high algorithm complexity of hyperspectral image (HSI) problems have posed big challenges for efficient classification of massive HSI data repositories. Recently, cloud computing architectures have become more relevant to address the big computational challenges introduced in the HSI field. This article proposes an acceleration method for HSI classification that relies on scheduling metaheuristics to automatically and optimally distribute the workload of HSI applications across multiple computing resources on a cloud platform. By analyzing the procedure of a representative classification method, we first develop its distributed and parallel implementation based on the MapReduce mechanism on Apache Spark. The subtasks of the processing flow that can be processed in a distributed way are identified as divisible tasks. The optimal execution of this application on Spark is further formulated as a divisible scheduling framework that takes into account both task execution precedences and task divisibility when allocating the divisible and indivisible subtasks onto computing nodes. The formulated scheduling framework is an optimization procedure that searches for optimized task assignments and partition counts for divisible tasks. Two metaheuristic algorithms are developed to solve this divisible scheduling problem. The scheduling results provide an optimized solution to the automatic processing of HSI big data on clouds, improving the computational efficiency of HSI classification by exploring the parallelism during the parallel processing flow. Experimental results demonstrate that our scheduling-guided approach achieves remarkable speedups by facilitating the automatic processing of HSI classification on Spark, and is scalable to the increasing HSI data volume. The large data volume and high algorithm complexity of hyperspectral image (HSI) problems have posed big challenges for efficient classification of massive HSI data repositories. Recently, cloud computing architectures have become more relevant to address the big computational challenges introduced in the HSI field. This article proposes an acceleration method for HSI classification that relies on scheduling metaheuristics to automatically and optimally distribute the workload of HSI applications across multiple computing resources on a cloud platform. By analyzing the procedure of a representative classification method, we first develop its distributed and parallel implementation based on the MapReduce mechanism on Apache Spark. The subtasks of the processing flow that can be processed in a distributed way are identified as divisible tasks. The optimal execution of this application on Spark is further formulated as a divisible scheduling framework that takes into account both task execution precedences and task divisibility when allocating the divisible and indivisible subtasks onto computing nodes. The formulated scheduling framework is an optimization procedure that searches for optimized task assignments and partition counts for divisible tasks. Two metaheuristic algorithms are developed to solve this divisible scheduling problem. The scheduling results provide an optimized solution to the automatic processing of HSI big data on clouds, improving the computational efficiency of HSI classification by exploring the parallelism during the parallel processing flow. Experimental results demonstrate that our scheduling-guided approach achieves remarkable speedups by facilitating the automatic processing of HSI classification on Spark, and is scalable to the increasing HSI data volume.The large data volume and high algorithm complexity of hyperspectral image (HSI) problems have posed big challenges for efficient classification of massive HSI data repositories. Recently, cloud computing architectures have become more relevant to address the big computational challenges introduced in the HSI field. This article proposes an acceleration method for HSI classification that relies on scheduling metaheuristics to automatically and optimally distribute the workload of HSI applications across multiple computing resources on a cloud platform. By analyzing the procedure of a representative classification method, we first develop its distributed and parallel implementation based on the MapReduce mechanism on Apache Spark. The subtasks of the processing flow that can be processed in a distributed way are identified as divisible tasks. The optimal execution of this application on Spark is further formulated as a divisible scheduling framework that takes into account both task execution precedences and task divisibility when allocating the divisible and indivisible subtasks onto computing nodes. The formulated scheduling framework is an optimization procedure that searches for optimized task assignments and partition counts for divisible tasks. Two metaheuristic algorithms are developed to solve this divisible scheduling problem. The scheduling results provide an optimized solution to the automatic processing of HSI big data on clouds, improving the computational efficiency of HSI classification by exploring the parallelism during the parallel processing flow. Experimental results demonstrate that our scheduling-guided approach achieves remarkable speedups by facilitating the automatic processing of HSI classification on Spark, and is scalable to the increasing HSI data volume. |
| Author | Li, Jun Zhu, Yaoqin Sun, Jin Wu, Zebin Benediktsson, Jon Atli Zhang, Yi Plaza, Antonio Wei, Zhihui |
| Author_xml | – sequence: 1 givenname: Zebin orcidid: 0000-0002-7162-0202 surname: Wu fullname: Wu, Zebin email: wuzb@njust.edu.cn organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 2 givenname: Jin orcidid: 0000-0003-4855-2499 surname: Sun fullname: Sun, Jin email: sunj@njust.edu.cn organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 3 givenname: Yi orcidid: 0000-0002-9941-6377 surname: Zhang fullname: Zhang, Yi email: yzhang@njust.edu.cn organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 4 givenname: Yaoqin surname: Zhu fullname: Zhu, Yaoqin email: zhuyaoqin@njust.edu.cn organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China – sequence: 5 givenname: Jun orcidid: 0000-0003-1613-9448 surname: Li fullname: Li, Jun email: lijun48@mail.sysu.edu.cn organization: Guangdong Provincial Key Laboratory of Urbanization and Geo-Simulation, Center of Integrated Geographic Information Analysis, School of Geography and Planning, Sun Yat-sen University, Guangzhou, China – sequence: 6 givenname: Antonio orcidid: 0000-0002-9613-1659 surname: Plaza fullname: Plaza, Antonio email: aplaza@unex.es organization: Department of Technology of Computers and Communications, Hyperspectral Computing Laboratory, University of Extremadura, Cáceres, Spain – sequence: 7 givenname: Jon Atli orcidid: 0000-0003-0621-9647 surname: Benediktsson fullname: Benediktsson, Jon Atli email: benedikt@hi.is organization: Faculty of Electrical and Computer Engineering, University of Iceland, Reykjavik, Iceland – sequence: 8 givenname: Zhihui orcidid: 0000-0002-4841-6051 surname: Wei fullname: Wei, Zhihui email: gswei@njust.edu.cn organization: School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China |
| BookMark | eNp9kctu1TAQhi1UREvpAyA2kdiwyakvsRMvDxG0lVqBRFmwsnyZtK6SONgxUt8eh1N10QWWJY88_zdjz_8WHc1hBoTeE7wjBMvz2_7X5x3FFO8YpkK07BU6oUR0NaUtP3qORXuMzlJ6wGV15Up2b9AxY4RIzvAJyj_sPbg8-vmuvsjegav2eQ2TXr2tvsdgIaWSq8JQ3egS_oHq8nGBmBawa9RjdTXpO6j6cUsO3hYuzFXZ_Riyq_owLXndCuyjvfdrgXKE9A69HvSY4OzpPEU_v3657S_r628XV_3-uraMirUWnFmBCcdOOCOpE50xYLAgBjNmnQEwYuBGE81xIzAeNHdDW77JpJFMDuwUfTrUXWL4nSGtavLJwjjqGUJOijZcNFgy2hXpxxfSh5DjXF6nKG8aKru2a4uKHFQ2hpQiDGqJftLxURGsNlvUZovabFFPthSmfcFYv_6bUxmgH_9LfjiQHgCeO0naNFhQ9hfpt5ui |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1109_JSTARS_2023_3344117 crossref_primary_10_1109_TGRS_2022_3162721 crossref_primary_10_3390_rs16224125 crossref_primary_10_1109_TGRS_2023_3273287 crossref_primary_10_1109_JSTARS_2022_3147195 crossref_primary_10_1016_j_microc_2022_108020 crossref_primary_10_3390_rs16183532 crossref_primary_10_1109_LGRS_2021_3077257 crossref_primary_10_1109_JPROC_2021_3063258 crossref_primary_10_1109_JSTARS_2020_3036896 crossref_primary_10_1109_TGRS_2025_3576656 crossref_primary_10_1109_TGRS_2023_3317033 crossref_primary_10_1109_TNNLS_2022_3232225 crossref_primary_10_1109_JSTARS_2021_3132164 crossref_primary_10_1109_TGRS_2022_3203488 crossref_primary_10_1109_ACCESS_2025_3542093 crossref_primary_10_1109_TNNLS_2024_3517535 crossref_primary_10_1109_TGRS_2022_3189015 crossref_primary_10_1145_3638771 crossref_primary_10_1109_TCSVT_2024_3425655 crossref_primary_10_1109_TGRS_2024_3407206 crossref_primary_10_1109_TIP_2025_3542276 crossref_primary_10_1109_TGRS_2023_3336664 crossref_primary_10_1109_LGRS_2021_3100061 crossref_primary_10_1109_TGRS_2022_3181466 crossref_primary_10_1109_TGRS_2021_3123651 crossref_primary_10_3390_electronics13163271 crossref_primary_10_3390_rs13020176 crossref_primary_10_1016_j_heliyon_2024_e35792 crossref_primary_10_1109_TGRS_2022_3189624 crossref_primary_10_3390_rs14092153 crossref_primary_10_1109_TGRS_2023_3339956 crossref_primary_10_1016_j_jss_2021_111123 crossref_primary_10_1109_TGRS_2022_3186916 crossref_primary_10_1109_TGRS_2021_3101848 crossref_primary_10_1109_JPROC_2021_3094335 crossref_primary_10_1109_TSC_2023_3293048 crossref_primary_10_1109_JSTARS_2021_3051210 crossref_primary_10_1088_1361_6501_ac99f4 crossref_primary_10_1109_TGRS_2021_3107352 crossref_primary_10_1109_TGRS_2024_3385316 crossref_primary_10_1109_JSTARS_2023_3344022 crossref_primary_10_1109_TGRS_2024_3349415 crossref_primary_10_1109_TGRS_2022_3188501 crossref_primary_10_1016_j_compag_2022_107561 crossref_primary_10_1016_j_future_2024_107572 crossref_primary_10_1109_JPROC_2021_3087029 crossref_primary_10_1109_LGRS_2024_3449087 crossref_primary_10_3390_smartcities8020051 crossref_primary_10_1109_TGRS_2022_3174276 crossref_primary_10_1109_TGRS_2024_3425428 crossref_primary_10_1109_TGRS_2024_3497976 crossref_primary_10_1109_TGRS_2023_3276175 crossref_primary_10_1109_TNNLS_2022_3212985 crossref_primary_10_3390_s23073550 crossref_primary_10_1109_TGRS_2025_3554711 crossref_primary_10_1155_2021_5530023 crossref_primary_10_3390_s21217271 crossref_primary_10_1016_j_sysarc_2024_103131 crossref_primary_10_1109_TGRS_2022_3211209 crossref_primary_10_1109_JSTARS_2021_3087588 crossref_primary_10_1109_TGRS_2023_3235819 crossref_primary_10_1007_s13369_023_08172_2 crossref_primary_10_1109_LGRS_2024_3474181 crossref_primary_10_1109_JSTARS_2022_3158761 crossref_primary_10_1109_TGRS_2024_3516817 crossref_primary_10_1109_TGRS_2024_3523384 |
| Cites_doi | 10.1109/TPDS.2009.62 10.1023/A:1020958815308 10.1109/TCYB.2018.2825598 10.1109/JSTARS.2019.2951725 10.1007/BF01009452 10.1007/s10732-010-9136-0 10.1109/TPWRS.2010.2059716 10.1109/JSTARS.2016.2542193 10.1109/LGRS.2015.2441631 10.1109/36.3001 10.1109/TEVC.2002.804320 10.1109/TCYB.2015.2453359 10.1109/TGRS.2004.831865 10.1109/WHISPERS.2010.5594963 10.1109/CVPR.2011.5995323 10.1109/TGRS.2011.2176341 10.1109/JPROC.2016.2598228 10.1109/TGRS.2011.2162649 10.1109/TCYB.2018.2810806 10.1109/JSTARS.2014.2341811 10.1109/TGRS.2013.2286195 10.1109/LGRS.2010.2046618 10.1109/TCYB.2016.2605044 10.1109/TCYB.2015.2484324 10.1109/TCYB.2018.2864670 10.1145/1327452.1327492 10.1109/JSTARS.2015.2413831 10.1016/j.sysarc.2020.101799 10.1109/TPDS.2010.204 10.1109/TGRS.2018.2890513 10.1109/TGRS.2017.2691906 10.1007/978-3-030-01449-0_21 10.1109/TPWRS.2008.2004743 10.1109/JSTARS.2015.2413931 10.1109/JSTARS.2016.2603120 10.1109/JSTARS.2019.2911987 10.1016/j.rse.2007.07.028 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2020.3026673 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 3601 |
| ExternalDocumentID | 10_1109_TCYB_2020_3026673 9244062 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province of China grantid: BK20180018 funderid: 10.13039/501100004608 – fundername: Fundamental Research Funds for the Central Universities grantid: 30917015104; 30919011103; 30919011402; 30920021132 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 61772274; 61872185 funderid: 10.13039/501100001809 – fundername: European Union’s Horizon 2020 Research and Innovation Programme (EOXPOSURE) grantid: 734541 – fundername: Junta de Extremadura (Decreto 14/2018, de 6 de febrero, por el que se establecen las bases reguladoras de las ayudas para la realizacion de actividades de investigacion y desarrollo tecnologico, de divulgacion y de transferencia de conocimiento por los Grupos de Investigacion de Extremadura) grantid: GR18060 funderid: 10.13039/501100014181 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c326t-653c60150d6db92d68bbeb061b033cdbeeb6f5ba1a504600fa5df708139b939f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 80 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000665001500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sat Sep 27 20:05:38 EDT 2025 Mon Jun 30 04:25:26 EDT 2025 Sat Nov 29 02:02:31 EST 2025 Tue Nov 18 22:27:55 EST 2025 Wed Aug 27 02:26:22 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c326t-653c60150d6db92d68bbeb061b033cdbeeb6f5ba1a504600fa5df708139b939f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0621-9647 0000-0002-7162-0202 0000-0002-9613-1659 0000-0002-4841-6051 0000-0003-1613-9448 0000-0002-9941-6377 0000-0003-4855-2499 |
| PMID | 33119530 |
| PQID | 2544298787 |
| PQPubID | 85422 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2456409328 crossref_primary_10_1109_TCYB_2020_3026673 ieee_primary_9244062 crossref_citationtrail_10_1109_TCYB_2020_3026673 proquest_journals_2544298787 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-07-01 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref34 ref12 ref15 ref36 ref31 ref30 magoules (ref24) 2012 ref33 ref11 ref10 kennedy (ref28) 2002 ref2 ref1 ref39 ref17 ref16 ref19 wu (ref14) 2015; 12 ref18 ref23 ref26 ref20 ref42 ref41 ref22 ref44 el-rewini (ref25) 2007 haut (ref32) 2017 xun (ref35) 2007; 34 ref21 ref43 ref27 ref29 ref8 ref7 zaharia (ref38) 2012 ref9 ref4 ref3 ryza (ref37) 2015 ref6 ref5 ref40 |
| References_xml | – start-page: 1063 year: 2017 ident: ref32 article-title: Cloud implementation of logistic regression for hyperspectral image classification publication-title: Proc Int Conf Comput Math Methods Sci Eng – ident: ref31 doi: 10.1109/TPDS.2009.62 – volume: 34 start-page: 18 year: 2007 ident: ref35 article-title: Target detection algorithm in hyperspectral image based on CEM publication-title: Opto-Electron Eng – ident: ref30 doi: 10.1023/A:1020958815308 – ident: ref6 doi: 10.1109/TCYB.2018.2825598 – ident: ref5 doi: 10.1109/JSTARS.2019.2951725 – ident: ref27 doi: 10.1007/BF01009452 – ident: ref29 doi: 10.1007/s10732-010-9136-0 – year: 2012 ident: ref24 publication-title: Cloud Computing Data-Intensive Computing and Scheduling – ident: ref41 doi: 10.1109/TPWRS.2010.2059716 – ident: ref8 doi: 10.1109/JSTARS.2016.2542193 – start-page: 1 year: 2012 ident: ref38 article-title: Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing publication-title: Proc USENIX Conf Netw Syst Design Implement – volume: 12 start-page: 1973 year: 2015 ident: ref14 article-title: GPU implementation of composite kernels for hyperspectral image classification publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2015.2441631 – ident: ref34 doi: 10.1109/36.3001 – ident: ref40 doi: 10.1109/TEVC.2002.804320 – ident: ref22 doi: 10.1109/TCYB.2015.2453359 – ident: ref15 doi: 10.1109/TGRS.2004.831865 – ident: ref44 doi: 10.1109/WHISPERS.2010.5594963 – ident: ref36 doi: 10.1109/CVPR.2011.5995323 – ident: ref17 doi: 10.1109/TGRS.2011.2176341 – ident: ref7 doi: 10.1109/JPROC.2016.2598228 – start-page: 1942 year: 2002 ident: ref28 article-title: Particle swarm optimization publication-title: Proc Int Conf Neural Netw – ident: ref19 doi: 10.1109/TGRS.2011.2162649 – ident: ref21 doi: 10.1109/TCYB.2018.2810806 – ident: ref4 doi: 10.1109/JSTARS.2014.2341811 – ident: ref3 doi: 10.1109/TGRS.2013.2286195 – ident: ref16 doi: 10.1109/LGRS.2010.2046618 – ident: ref2 doi: 10.1109/TCYB.2016.2605044 – ident: ref18 doi: 10.1109/TCYB.2015.2484324 – ident: ref12 doi: 10.1109/TCYB.2018.2864670 – ident: ref11 doi: 10.1145/1327452.1327492 – ident: ref43 doi: 10.1109/JSTARS.2015.2413831 – ident: ref39 doi: 10.1016/j.sysarc.2020.101799 – ident: ref26 doi: 10.1109/TPDS.2010.204 – ident: ref10 doi: 10.1109/TGRS.2018.2890513 – ident: ref20 doi: 10.1109/TGRS.2017.2691906 – ident: ref33 doi: 10.1007/978-3-030-01449-0_21 – year: 2015 ident: ref37 publication-title: Advanced Analytics with Spark Patterns for Learning from Data at Scale – ident: ref42 doi: 10.1109/TPWRS.2008.2004743 – ident: ref23 doi: 10.1109/JSTARS.2015.2413931 – ident: ref9 doi: 10.1109/JSTARS.2016.2603120 – year: 2007 ident: ref25 publication-title: Task Scheduling in Parallel and Distributed Systems – ident: ref1 doi: 10.1109/JSTARS.2019.2911987 – ident: ref13 doi: 10.1016/j.rse.2007.07.028 |
| SSID | ssj0000816898 |
| Score | 2.538855 |
| Snippet | The large data volume and high algorithm complexity of hyperspectral image (HSI) problems have posed big challenges for efficient classification of massive HSI... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3588 |
| SubjectTerms | Algorithms Classification Cloud computing distributed and parallel processing divisible task scheduling Heuristic methods hyperspectral image (HSI) classification Hyperspectral imaging Image classification Optimization Parallel processing partitioning factor Processor scheduling Scheduling Sparks Task analysis Task scheduling |
| Title | Scheduling-Guided Automatic Processing of Massive Hyperspectral Image Classification on Cloud Computing Architectures |
| URI | https://ieeexplore.ieee.org/document/9244062 https://www.proquest.com/docview/2544298787 https://www.proquest.com/docview/2456409328 |
| Volume | 51 |
| WOSCitedRecordID | wos000665001500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-QwFD644oMvu96WHVclgg8qdm2btGkex8EbqAgqjE8laVIRdLo40_39npPGIrgIQh8KTUPpl5xLzuUD2Ekkz7UVxBFmdSSETiJdaRWhKsuVjTWqOF8ofCGvrorxWF3PwUFfC-Oc88ln7g_d-li-baqWjsoO0VdA_YMC95uUsqvV6s9TPIGEp75N8SZCq0KGIGYSq8Pb0f0ROoMp-qjodOSS6HM4p3ZnlP78TiN5ipUPctkrm5MfX_vMJfgejEo27FbBMsy5yQosh207Zbuht_TeKrQ3CJKl7POH6LR9tM6yYTtrfN9WFooG8BlranaJZjWKQnaGnmpXkIlTsPNnFEDMU2lSkpHHleE1empayzqOCJpg-C5AMV2Du5Pj29FZFJgXogrNuVmUZ7zK6SyE6KZUavPCGGdQ9ZuY88oa50xeZ0YnOqPAalzrzNYSIeDKKK5q_hPmJ83E_QImhal5LqqCcyEyIwxabIXJalFotFZMMoD47e-XVWhLTuwYT6V3T2JVEnYlYVcG7Aaw37_yt-vJ8dngVUKoHxjAGcDGG8Rl2LXTktq1papAGTaA7f4x7jcKouiJa1ocQ_13YrR6i_X_z_wbFlPKe_EpvRswP3tp3SYsVP9mj9OXLVy642LLL91XNWjovQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS9xAFD6ILdSXtt5wW2tH8KGKcZPM5DKP61K74roIrqBPYSYzKYJuxN309_ecyRgERRDyEMhkCPlmzmXO5QPYizKeKiOII8yoQAgVBapUMkBVlkoTKlRxrlB4nE0m-fW1vFiCw64Wxlrrks_sEd26WL6py4aOyvroK6D-QYH7IREijtpqre5ExVFIOPLbGG8CtCsyH8aMQtmfDm-O0R2M0UtFtyPNiECHc2p4RgnQz3SSI1l5IZmdujn58r4P_QqfvVnJBu06WIUlO1uDVb9x5-yX7y69vw7NJcJkKP_8b_CnuTXWsEGzqF3nVubLBvAZqyt2joY1CkM2Ql-1LcnEKdjpPYog5sg0Kc3IIcvwGt7VjWEtSwRNMHgWophvwNXJ7-lwFHjuhaBEg24RpAkvUzoNIcIpGZs019pqVP465Lw02lqdVolWkUootBpWKjFVhhBwqSWXFd-E5Vk9s1vAMqErnooy51yIRAuNNluuk0rkCu0VHfUgfPr7RekbkxM_xl3hHJRQFoRdQdgVHrseHHSvPLRdOd4avE4IdQM9OD3YfoK48Pt2XlDDtljmKMV6sNs9xh1HYRQ1s3WDY6gDT4h2b_7t9Zl_wqfR9HxcjE8nZ99hJaYsGJfguw3Li8fG_oCP5b_F7fxxxy3g__iI6xw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scheduling-Guided+Automatic+Processing+of+Massive+Hyperspectral+Image+Classification+on+Cloud+Computing+Architectures&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wu%2C+Zebin&rft.au=Sun%2C+Jin&rft.au=Zhang%2C+Yi&rft.au=Zhu%2C+Yaoqin&rft.date=2021-07-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=51&rft.issue=7&rft.spage=3588&rft_id=info:doi/10.1109%2FTCYB.2020.3026673&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |