An Effective Swarm Intelligence Optimization Algorithm for Flexible Ligand Docking
In general, flexible ligand docking is used for docking simulations under the premise that the position of the binding site is already known, and meanwhile it can also be used without prior knowledge of the binding site. However, most of the optimization search algorithms used in popular docking sof...
Saved in:
| Published in: | IEEE/ACM transactions on computational biology and bioinformatics Vol. 19; no. 5; pp. 2672 - 2684 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1545-5963, 1557-9964, 1557-9964 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In general, flexible ligand docking is used for docking simulations under the premise that the position of the binding site is already known, and meanwhile it can also be used without prior knowledge of the binding site. However, most of the optimization search algorithms used in popular docking software are far from being ideal in the first case, and they can hardly be directly utilized for the latter case due to the relatively large search area. In order to design an algorithm that can flexibly adapt to different sizes of the search area, we propose an effective swarm intelligence optimization algorithm in this paper, called diversity-controlled Lamarckian quantum particle swarm optimization (DCL-QPSO). The highlights of the algorithm are a diversity-controlled strategy and a modified local search method. Integrated with the docking environment of Autodock, the DCL-QPSO is compared with Autodock Vina, Glide and other two Autodock-based search algorithms for flexible ligand docking. Experimental results revealed that the proposed algorithm has a performance comparable to those of Autodock Vina and Glide for dockings within a certain area around the binding sites, and is a more effective solver than all the compared methods for dockings without prior knowledge of the binding sites. |
|---|---|
| AbstractList | In general, flexible ligand docking is used for docking simulations under the premise that the position of the binding site is already known, and meanwhile it can also be used without prior knowledge of the binding site. However, most of the optimization search algorithms used in popular docking software are far from being ideal in the first case, and they can hardly be directly utilized for the latter case due to the relatively large search area. In order to design an algorithm that can flexibly adapt to different sizes of the search area, we propose an effective swarm intelligence optimization algorithm in this paper, called diversity-controlled Lamarckian quantum particle swarm optimization (DCL-QPSO). The highlights of the algorithm are a diversity-controlled strategy and a modified local search method. Integrated with the docking environment of Autodock, the DCL-QPSO is compared with Autodock Vina, Glide and other two Autodock-based search algorithms for flexible ligand docking. Experimental results revealed that the proposed algorithm has a performance comparable to those of Autodock Vina and Glide for dockings within a certain area around the binding sites, and is a more effective solver than all the compared methods for dockings without prior knowledge of the binding sites.In general, flexible ligand docking is used for docking simulations under the premise that the position of the binding site is already known, and meanwhile it can also be used without prior knowledge of the binding site. However, most of the optimization search algorithms used in popular docking software are far from being ideal in the first case, and they can hardly be directly utilized for the latter case due to the relatively large search area. In order to design an algorithm that can flexibly adapt to different sizes of the search area, we propose an effective swarm intelligence optimization algorithm in this paper, called diversity-controlled Lamarckian quantum particle swarm optimization (DCL-QPSO). The highlights of the algorithm are a diversity-controlled strategy and a modified local search method. Integrated with the docking environment of Autodock, the DCL-QPSO is compared with Autodock Vina, Glide and other two Autodock-based search algorithms for flexible ligand docking. Experimental results revealed that the proposed algorithm has a performance comparable to those of Autodock Vina and Glide for dockings within a certain area around the binding sites, and is a more effective solver than all the compared methods for dockings without prior knowledge of the binding sites. In general, flexible ligand docking is used for docking simulations under the premise that the position of the binding site is already known, and meanwhile it can also be used without prior knowledge of the binding site. However, most of the optimization search algorithms used in popular docking software are far from being ideal in the first case, and they can hardly be directly utilized for the latter case due to the relatively large search area. In order to design an algorithm that can flexibly adapt to different sizes of the search area, we propose an effective swarm intelligence optimization algorithm in this paper, called diversity-controlled Lamarckian quantum particle swarm optimization (DCL-QPSO). The highlights of the algorithm are a diversity-controlled strategy and a modified local search method. Integrated with the docking environment of Autodock, the DCL-QPSO is compared with Autodock Vina, Glide and other two Autodock-based search algorithms for flexible ligand docking. Experimental results revealed that the proposed algorithm has a performance comparable to those of Autodock Vina and Glide for dockings within a certain area around the binding sites, and is a more effective solver than all the compared methods for dockings without prior knowledge of the binding sites. |
| Author | Sun, Jun Palade, Vasile Li, Chao Li, Li-Wei Wu, Xiaojun |
| Author_xml | – sequence: 1 givenname: Chao orcidid: 0000-0003-0119-1702 surname: Li fullname: Li, Chao email: lcmeteor@hotmail.com organization: Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Wuxi, Jiangsu, China – sequence: 2 givenname: Jun orcidid: 0000-0002-9824-4294 surname: Sun fullname: Sun, Jun email: sunjun_wx@hotmail.com organization: Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Wuxi, Jiangsu, China – sequence: 3 givenname: Li-Wei surname: Li fullname: Li, Li-Wei email: liliwei89@hotmail.com organization: Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Wuxi, Jiangsu, China – sequence: 4 givenname: Xiaojun orcidid: 0000-0002-0310-5778 surname: Wu fullname: Wu, Xiaojun email: wu_xiaojun@jiangnan.edu.cn organization: Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Wuxi, Jiangsu, China – sequence: 5 givenname: Vasile orcidid: 0000-0002-6768-8394 surname: Palade fullname: Palade, Vasile email: ab5839@coventry.ac.uk organization: Faculty of Engineering and Computing, Coventry University, Coventry, U.K |
| BookMark | eNp9kE1vEzEQhi1URD_gByAulrj0smH8HR_T0NJKkSpBOVteZza47NrB61Dg17MhVQ89cJo5PM_onfeUHKWckJC3DGaMgf1wt7y4mHHgbCYYCGPMC3LClDKNtVoe7XepGmW1OCan43gPwKUF-YocCymM4nN1Qj4vEr3sOgw1_kT65cGXgd6kin0fN5gC0tttjUP842vMiS76TS6xfhtolwu96vFXbHukq7jxaU0_5vA9ps1r8rLz_YhvHucZ-Xp1ebe8bla3n26Wi1UTBNe1kVLIKbQQuMYODGrbss6upWkRuNZg7dwKiV3bAgSmvDaBiTVw24JXUrTijJwf7m5L_rHDsbohjmFK7hPm3ei40hNtmJYT-v4Zep93JU3pHDdcWGBMwESZAxVKHseCnQux_nu8Fh97x8Dta3f72t2-dvdY-2SyZ-a2xMGX3_913h2ciIhPvFUTPmfiL7lvi_Q |
| CODEN | ITCBCY |
| CitedBy_id | crossref_primary_10_1080_07391102_2023_2291829 crossref_primary_10_1007_s40747_025_01826_8 crossref_primary_10_3390_ijms25115945 crossref_primary_10_7717_peerj_17340 crossref_primary_10_3390_ijms241813831 |
| Cites_doi | 10.3390/ijms20020422 10.1109/ICNN.1995.488968 10.1016/j.energy.2010.07.043 10.1038/s41598-017-15571-7 10.1021/ja202726y 10.1016/j.sbi.2016.11.024 10.1007/s10822-011-9533-y 10.1002/jcc.20542 10.1002/jcc.23905 10.1007/s11036-018-1136-6 10.1016/j.molliq.2020.114784 10.1021/jm300687e 10.1021/acs.jcim.9b00778 10.1007/s10822-007-9166-3 10.1016/j.asoc.2014.10.049 10.1109/4235.985692 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B 10.1186/s12860-019-0218-z 10.1038/s41401-019-0228-6 10.1110/ps.0202302 10.1287/moor.6.1.19 10.1039/C6CP01555G 10.1002/jcc.23108 10.1021/acsomega.8b03457 10.1109/TCBB.2012.82 10.1162/EVCO_a_00049 10.1021/acs.jcim.5b00234 10.1021/acs.jcim.6b00443 10.1002/prot.340080302 10.1109/ACCESS.2019.2938063 10.1002/jmr.2471 10.1002/jcc.23438 10.1007/s00894-014-2251-3 10.1007/3-540-45712-7_45 10.1007/s00362-012-0443-4 10.1002/jcc.21202 10.1002/jcc.21334 10.2174/1386207321666180213092018 10.1093/bioinformatics/btt447 10.1186/s13321-020-00440-9 10.1016/j.asoc.2018.04.027 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TCBB.2021.3103777 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1557-9964 |
| EndPage | 2684 |
| ExternalDocumentID | 10_1109_TCBB_2021_3103777 9511081 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: national first-class Discipline Program of Light Industry Technology and Engineering grantid: LITE2018-25 – fundername: National Natural Science Foundation of China grantid: 61673194; 61672263; 61672265 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 29I 4.4 53G 5GY 5VS 6IK 8US 97E AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACM ACPRK ADBCU ADL AEBYY AEFXT AEJOY AENEX AENSD AETIX AFRAH AFWIH AFWXC AGQYO AGSQL AHBIQ AIBXA AIKLT AKJIK AKQYR AKRVB ALMA_UNASSIGNED_HOLDINGS ASPBG ATWAV AVWKF BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EBS EJD FEDTE GUFHI HGAVV HZ~ I07 IEDLZ IFIPE IPLJI JAVBF LAI LHSKQ M43 O9- OCL P1C P2P PQQKQ RIA RIE RNI RNS ROL RZB TN5 XOL AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c326t-443403733edef07e69b1f9d47be02660998934efbb00c15a67c13d029b0a543b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 7 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000866522800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5963 1557-9964 |
| IngestDate | Sun Sep 28 07:03:37 EDT 2025 Sun Nov 09 06:09:37 EST 2025 Sat Nov 29 01:52:05 EST 2025 Tue Nov 18 22:03:06 EST 2025 Wed Aug 27 01:57:01 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c326t-443403733edef07e69b1f9d47be02660998934efbb00c15a67c13d029b0a543b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0310-5778 0000-0003-0119-1702 0000-0002-6768-8394 0000-0002-9824-4294 |
| PMID | 34375285 |
| PQID | 2723901130 |
| PQPubID | 85499 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_TCBB_2021_3103777 proquest_miscellaneous_2560297164 crossref_primary_10_1109_TCBB_2021_3103777 proquest_journals_2723901130 ieee_primary_9511081 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-09-01 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE/ACM transactions on computational biology and bioinformatics |
| PublicationTitleAbbrev | TCBB |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ref24 Sun (ref28) ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 ref43 ref27 ref29 ref8 ref7 Forli (ref39) 2012 ref9 ref4 ref3 ref6 ref5 ref40 |
| References_xml | – ident: ref19 doi: 10.3390/ijms20020422 – ident: ref25 doi: 10.1109/ICNN.1995.488968 – ident: ref27 doi: 10.1016/j.energy.2010.07.043 – ident: ref24 doi: 10.1038/s41598-017-15571-7 – ident: ref14 doi: 10.1021/ja202726y – ident: ref15 doi: 10.1016/j.sbi.2016.11.024 – ident: ref9 doi: 10.1007/s10822-011-9533-y – ident: ref3 doi: 10.1002/jcc.20542 – ident: ref10 doi: 10.1002/jcc.23905 – ident: ref21 doi: 10.1007/s11036-018-1136-6 – ident: ref18 doi: 10.1016/j.molliq.2020.114784 – ident: ref34 doi: 10.1021/jm300687e – ident: ref38 doi: 10.1021/acs.jcim.9b00778 – ident: ref43 doi: 10.1007/s10822-007-9166-3 – ident: ref2 doi: 10.1016/j.asoc.2014.10.049 – ident: ref26 doi: 10.1109/4235.985692 – ident: ref6 doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B – ident: ref41 doi: 10.1186/s12860-019-0218-z – ident: ref17 doi: 10.1038/s41401-019-0228-6 – ident: ref22 doi: 10.1110/ps.0202302 – ident: ref12 doi: 10.1287/moor.6.1.19 – ident: ref37 doi: 10.1039/C6CP01555G – ident: ref20 doi: 10.1002/jcc.23108 – ident: ref16 doi: 10.1021/acsomega.8b03457 – year: 2012 ident: ref39 article-title: AutoDock version 4.2 – ident: ref4 doi: 10.1109/TCBB.2012.82 – ident: ref29 doi: 10.1162/EVCO_a_00049 – ident: ref40 doi: 10.1021/acs.jcim.5b00234 – ident: ref11 doi: 10.1021/acs.jcim.6b00443 – ident: ref5 doi: 10.1002/prot.340080302 – start-page: 325 volume-title: Proc. Congr. Evol. Comput. ident: ref28 article-title: Particle swarm optimization with particles having quantum behavior – ident: ref32 doi: 10.1109/ACCESS.2019.2938063 – ident: ref1 doi: 10.1002/jmr.2471 – ident: ref13 doi: 10.1002/jcc.23438 – ident: ref36 doi: 10.1007/s00894-014-2251-3 – ident: ref30 doi: 10.1007/3-540-45712-7_45 – ident: ref42 doi: 10.1007/s00362-012-0443-4 – ident: ref23 doi: 10.1002/jcc.21202 – ident: ref7 doi: 10.1002/jcc.21334 – ident: ref8 doi: 10.2174/1386207321666180213092018 – ident: ref35 doi: 10.1093/bioinformatics/btt447 – ident: ref33 doi: 10.1186/s13321-020-00440-9 – ident: ref31 doi: 10.1016/j.asoc.2018.04.027 |
| SSID | ssj0024904 |
| Score | 2.354162 |
| Snippet | In general, flexible ligand docking is used for docking simulations under the premise that the position of the binding site is already known, and meanwhile it... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2672 |
| SubjectTerms | Algorithms autodock Binding sites Birds diversity-controlled strategy Docking Flexible ligand docking Intelligence Ligands Optimization Optimization algorithms Particle swarm optimization Proteins quantum particle swarm optimization search algorithm Search algorithms Search methods Search problems Software algorithms solis and wets local search Swarm intelligence Trajectory |
| Title | An Effective Swarm Intelligence Optimization Algorithm for Flexible Ligand Docking |
| URI | https://ieeexplore.ieee.org/document/9511081 https://www.proquest.com/docview/2723901130 https://www.proquest.com/docview/2560297164 |
| Volume | 19 |
| WOSCitedRecordID | wos000866522800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024904 issn: 1545-5963 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB5qqeCLtlbxalsi-CRum2yym8vjtfRQKFW0wr0tSXauHtztyfWu4n_vTHZ7FiyFvgU2WXYzk8yXH_N9AO-V8Qb7ucn8GF1mSi-pZDGzqFXQBmNRJ3b9c3tx0R-N3NcN-LjOhUHEdPkMj7iYzvLreVzxVtkxoQElOc_6ibVlm6v1j1fPJalARgRZQV7VnWAq6Y4vT09OaCWYqyMW1bKWhfe00bbIWUH5TjhK-ir_Tcop0gxfPO4bt-F5hyjFoHWBHdjA5iU8bTUm_-zCt0EjWopimtfE999-MROf7_Bwii80acy6bEwxmF7NF5Plz5kgMCuGzJYZpijOJ1e-qQVFJN5ZfwU_hmeXp5-yTkghi4TOlpkx2tCPa401jqXF0gU1drWxAWkJVhJIJNRicBxoDEZV-NJGpWuZuyB9YXTQr2GzmTf4BgQSZCqVjwSjnCmj8bqUnmBcVMGi86EH8rY_q9ixjLPYxbRKqw3pKrZGxdaoOmv04MO6ya-WYuOhyrvc5-uKXXf3YP_WaFU3CK-r3Oa8o0NRugfv1o9p-PCZiG9wvqI6hPhyptEye_e_-S08yznjIV0r24fN5WKFB7AVb5aT68UheeKof5g88S8VkNZX |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5NYwhexmBMdBvDSDwhsvlX4vmxm6g2UQqCIu0tsp3rqNSmqGtB_Pc7O1mZxDRpb5ZiR4nP9n32-b4P4J3QTuOx1Jkboc104TiVDGYGlfBKY8irxK7fN4PB8cWF_boGH1a5MIiYLp_hYSymWH41C8t4VHZEaEDwmGf9KNda8iZb6x-znk1igRETZDmNqzaGKbg9Gp6enNBeUIrDKKtlTJTeU1qZXEYN5VsOKSms_LcsJ1_Te_awr9yCzRZTsm4zCJ7DGtYv4HGjMvl3G751a9aQFNPKxr7_cfMpO7_FxMm-0LIxbfMxWXdyOZuPFz-njOAs60W-TD9B1h9furpi5JPi2fpL-NH7ODw9y1ophSwQPltkWitNP64UVjjiBgvrxchW2nikTVhBMJFwi8aRp1kYRO4KE4SquLSeu1wrr3ZgvZ7V-AoYEmgqhAsEpKwugnaq4I6AXBDeoHW-A_ymP8vQ8oxHuYtJmfYb3JbRGmW0RtlaowPvV01-NSQb91Xejn2-qth2dwf2b4xWttPwqpRGxjMd8tMdeLt6TBMoRkVcjbMl1SHMJyORlt69-81v4MnZ8HO_7J8PPu3BUxnzH9Ils31YX8yX-Bo2wu_F-Gp-kMbjNVmT2LY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Effective+Swarm+Intelligence+Optimization+Algorithm+for+Flexible+Ligand+Docking&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Li%2C+Chao&rft.au=Sun%2C+Jun&rft.au=Li%2C+Li-Wei&rft.au=Wu%2C+Xiaojun&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=1545-5963&rft.volume=19&rft.issue=5&rft.spage=2672&rft.epage=2684&rft_id=info:doi/10.1109%2FTCBB.2021.3103777&rft_id=info%3Apmid%2F34375285&rft.externalDocID=9511081 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon |