An Effective Swarm Intelligence Optimization Algorithm for Flexible Ligand Docking

In general, flexible ligand docking is used for docking simulations under the premise that the position of the binding site is already known, and meanwhile it can also be used without prior knowledge of the binding site. However, most of the optimization search algorithms used in popular docking sof...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/ACM transactions on computational biology and bioinformatics Ročník 19; číslo 5; s. 2672 - 2684
Hlavní autoři: Li, Chao, Sun, Jun, Li, Li-Wei, Wu, Xiaojun, Palade, Vasile
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1545-5963, 1557-9964, 1557-9964
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In general, flexible ligand docking is used for docking simulations under the premise that the position of the binding site is already known, and meanwhile it can also be used without prior knowledge of the binding site. However, most of the optimization search algorithms used in popular docking software are far from being ideal in the first case, and they can hardly be directly utilized for the latter case due to the relatively large search area. In order to design an algorithm that can flexibly adapt to different sizes of the search area, we propose an effective swarm intelligence optimization algorithm in this paper, called diversity-controlled Lamarckian quantum particle swarm optimization (DCL-QPSO). The highlights of the algorithm are a diversity-controlled strategy and a modified local search method. Integrated with the docking environment of Autodock, the DCL-QPSO is compared with Autodock Vina, Glide and other two Autodock-based search algorithms for flexible ligand docking. Experimental results revealed that the proposed algorithm has a performance comparable to those of Autodock Vina and Glide for dockings within a certain area around the binding sites, and is a more effective solver than all the compared methods for dockings without prior knowledge of the binding sites.
AbstractList In general, flexible ligand docking is used for docking simulations under the premise that the position of the binding site is already known, and meanwhile it can also be used without prior knowledge of the binding site. However, most of the optimization search algorithms used in popular docking software are far from being ideal in the first case, and they can hardly be directly utilized for the latter case due to the relatively large search area. In order to design an algorithm that can flexibly adapt to different sizes of the search area, we propose an effective swarm intelligence optimization algorithm in this paper, called diversity-controlled Lamarckian quantum particle swarm optimization (DCL-QPSO). The highlights of the algorithm are a diversity-controlled strategy and a modified local search method. Integrated with the docking environment of Autodock, the DCL-QPSO is compared with Autodock Vina, Glide and other two Autodock-based search algorithms for flexible ligand docking. Experimental results revealed that the proposed algorithm has a performance comparable to those of Autodock Vina and Glide for dockings within a certain area around the binding sites, and is a more effective solver than all the compared methods for dockings without prior knowledge of the binding sites.
In general, flexible ligand docking is used for docking simulations under the premise that the position of the binding site is already known, and meanwhile it can also be used without prior knowledge of the binding site. However, most of the optimization search algorithms used in popular docking software are far from being ideal in the first case, and they can hardly be directly utilized for the latter case due to the relatively large search area. In order to design an algorithm that can flexibly adapt to different sizes of the search area, we propose an effective swarm intelligence optimization algorithm in this paper, called diversity-controlled Lamarckian quantum particle swarm optimization (DCL-QPSO). The highlights of the algorithm are a diversity-controlled strategy and a modified local search method. Integrated with the docking environment of Autodock, the DCL-QPSO is compared with Autodock Vina, Glide and other two Autodock-based search algorithms for flexible ligand docking. Experimental results revealed that the proposed algorithm has a performance comparable to those of Autodock Vina and Glide for dockings within a certain area around the binding sites, and is a more effective solver than all the compared methods for dockings without prior knowledge of the binding sites.In general, flexible ligand docking is used for docking simulations under the premise that the position of the binding site is already known, and meanwhile it can also be used without prior knowledge of the binding site. However, most of the optimization search algorithms used in popular docking software are far from being ideal in the first case, and they can hardly be directly utilized for the latter case due to the relatively large search area. In order to design an algorithm that can flexibly adapt to different sizes of the search area, we propose an effective swarm intelligence optimization algorithm in this paper, called diversity-controlled Lamarckian quantum particle swarm optimization (DCL-QPSO). The highlights of the algorithm are a diversity-controlled strategy and a modified local search method. Integrated with the docking environment of Autodock, the DCL-QPSO is compared with Autodock Vina, Glide and other two Autodock-based search algorithms for flexible ligand docking. Experimental results revealed that the proposed algorithm has a performance comparable to those of Autodock Vina and Glide for dockings within a certain area around the binding sites, and is a more effective solver than all the compared methods for dockings without prior knowledge of the binding sites.
Author Sun, Jun
Palade, Vasile
Li, Chao
Li, Li-Wei
Wu, Xiaojun
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0003-0119-1702
  surname: Li
  fullname: Li, Chao
  email: lcmeteor@hotmail.com
  organization: Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Wuxi, Jiangsu, China
– sequence: 2
  givenname: Jun
  orcidid: 0000-0002-9824-4294
  surname: Sun
  fullname: Sun, Jun
  email: sunjun_wx@hotmail.com
  organization: Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Wuxi, Jiangsu, China
– sequence: 3
  givenname: Li-Wei
  surname: Li
  fullname: Li, Li-Wei
  email: liliwei89@hotmail.com
  organization: Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Wuxi, Jiangsu, China
– sequence: 4
  givenname: Xiaojun
  orcidid: 0000-0002-0310-5778
  surname: Wu
  fullname: Wu, Xiaojun
  email: wu_xiaojun@jiangnan.edu.cn
  organization: Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Wuxi, Jiangsu, China
– sequence: 5
  givenname: Vasile
  orcidid: 0000-0002-6768-8394
  surname: Palade
  fullname: Palade, Vasile
  email: ab5839@coventry.ac.uk
  organization: Faculty of Engineering and Computing, Coventry University, Coventry, U.K
BookMark eNp9kE1vEzEQhi1URD_gByAulrj0smH8HR_T0NJKkSpBOVteZza47NrB61Dg17MhVQ89cJo5PM_onfeUHKWckJC3DGaMgf1wt7y4mHHgbCYYCGPMC3LClDKNtVoe7XepGmW1OCan43gPwKUF-YocCymM4nN1Qj4vEr3sOgw1_kT65cGXgd6kin0fN5gC0tttjUP842vMiS76TS6xfhtolwu96vFXbHukq7jxaU0_5vA9ps1r8rLz_YhvHucZ-Xp1ebe8bla3n26Wi1UTBNe1kVLIKbQQuMYODGrbss6upWkRuNZg7dwKiV3bAgSmvDaBiTVw24JXUrTijJwf7m5L_rHDsbohjmFK7hPm3ei40hNtmJYT-v4Zep93JU3pHDdcWGBMwESZAxVKHseCnQux_nu8Fh97x8Dta3f72t2-dvdY-2SyZ-a2xMGX3_913h2ciIhPvFUTPmfiL7lvi_Q
CODEN ITCBCY
CitedBy_id crossref_primary_10_1080_07391102_2023_2291829
crossref_primary_10_1007_s40747_025_01826_8
crossref_primary_10_3390_ijms25115945
crossref_primary_10_7717_peerj_17340
crossref_primary_10_3390_ijms241813831
Cites_doi 10.3390/ijms20020422
10.1109/ICNN.1995.488968
10.1016/j.energy.2010.07.043
10.1038/s41598-017-15571-7
10.1021/ja202726y
10.1016/j.sbi.2016.11.024
10.1007/s10822-011-9533-y
10.1002/jcc.20542
10.1002/jcc.23905
10.1007/s11036-018-1136-6
10.1016/j.molliq.2020.114784
10.1021/jm300687e
10.1021/acs.jcim.9b00778
10.1007/s10822-007-9166-3
10.1016/j.asoc.2014.10.049
10.1109/4235.985692
10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
10.1186/s12860-019-0218-z
10.1038/s41401-019-0228-6
10.1110/ps.0202302
10.1287/moor.6.1.19
10.1039/C6CP01555G
10.1002/jcc.23108
10.1021/acsomega.8b03457
10.1109/TCBB.2012.82
10.1162/EVCO_a_00049
10.1021/acs.jcim.5b00234
10.1021/acs.jcim.6b00443
10.1002/prot.340080302
10.1109/ACCESS.2019.2938063
10.1002/jmr.2471
10.1002/jcc.23438
10.1007/s00894-014-2251-3
10.1007/3-540-45712-7_45
10.1007/s00362-012-0443-4
10.1002/jcc.21202
10.1002/jcc.21334
10.2174/1386207321666180213092018
10.1093/bioinformatics/btt447
10.1186/s13321-020-00440-9
10.1016/j.asoc.2018.04.027
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TCBB.2021.3103777
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-9964
EndPage 2684
ExternalDocumentID 10_1109_TCBB_2021_3103777
9511081
Genre orig-research
GrantInformation_xml – fundername: national first-class Discipline Program of Light Industry Technology and Engineering
  grantid: LITE2018-25
– fundername: National Natural Science Foundation of China
  grantid: 61673194; 61672263; 61672265
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
53G
5GY
5VS
6IK
8US
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACM
ACPRK
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETIX
AFRAH
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATWAV
AVWKF
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EBS
EJD
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNI
RNS
ROL
RZB
TN5
XOL
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c326t-443403733edef07e69b1f9d47be02660998934efbb00c15a67c13d029b0a543b3
IEDL.DBID RIE
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000866522800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5963
1557-9964
IngestDate Sun Sep 28 07:03:37 EDT 2025
Sun Nov 09 06:09:37 EST 2025
Sat Nov 29 01:52:05 EST 2025
Tue Nov 18 22:03:06 EST 2025
Wed Aug 27 01:57:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-443403733edef07e69b1f9d47be02660998934efbb00c15a67c13d029b0a543b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0310-5778
0000-0003-0119-1702
0000-0002-6768-8394
0000-0002-9824-4294
PMID 34375285
PQID 2723901130
PQPubID 85499
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_TCBB_2021_3103777
proquest_miscellaneous_2560297164
crossref_primary_10_1109_TCBB_2021_3103777
proquest_journals_2723901130
ieee_primary_9511081
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE/ACM transactions on computational biology and bioinformatics
PublicationTitleAbbrev TCBB
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref38
ref19
ref18
ref24
Sun (ref28)
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref21
ref43
ref27
ref29
ref8
ref7
Forli (ref39) 2012
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref19
  doi: 10.3390/ijms20020422
– ident: ref25
  doi: 10.1109/ICNN.1995.488968
– ident: ref27
  doi: 10.1016/j.energy.2010.07.043
– ident: ref24
  doi: 10.1038/s41598-017-15571-7
– ident: ref14
  doi: 10.1021/ja202726y
– ident: ref15
  doi: 10.1016/j.sbi.2016.11.024
– ident: ref9
  doi: 10.1007/s10822-011-9533-y
– ident: ref3
  doi: 10.1002/jcc.20542
– ident: ref10
  doi: 10.1002/jcc.23905
– ident: ref21
  doi: 10.1007/s11036-018-1136-6
– ident: ref18
  doi: 10.1016/j.molliq.2020.114784
– ident: ref34
  doi: 10.1021/jm300687e
– ident: ref38
  doi: 10.1021/acs.jcim.9b00778
– ident: ref43
  doi: 10.1007/s10822-007-9166-3
– ident: ref2
  doi: 10.1016/j.asoc.2014.10.049
– ident: ref26
  doi: 10.1109/4235.985692
– ident: ref6
  doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
– ident: ref41
  doi: 10.1186/s12860-019-0218-z
– ident: ref17
  doi: 10.1038/s41401-019-0228-6
– ident: ref22
  doi: 10.1110/ps.0202302
– ident: ref12
  doi: 10.1287/moor.6.1.19
– ident: ref37
  doi: 10.1039/C6CP01555G
– ident: ref20
  doi: 10.1002/jcc.23108
– ident: ref16
  doi: 10.1021/acsomega.8b03457
– year: 2012
  ident: ref39
  article-title: AutoDock version 4.2
– ident: ref4
  doi: 10.1109/TCBB.2012.82
– ident: ref29
  doi: 10.1162/EVCO_a_00049
– ident: ref40
  doi: 10.1021/acs.jcim.5b00234
– ident: ref11
  doi: 10.1021/acs.jcim.6b00443
– ident: ref5
  doi: 10.1002/prot.340080302
– start-page: 325
  volume-title: Proc. Congr. Evol. Comput.
  ident: ref28
  article-title: Particle swarm optimization with particles having quantum behavior
– ident: ref32
  doi: 10.1109/ACCESS.2019.2938063
– ident: ref1
  doi: 10.1002/jmr.2471
– ident: ref13
  doi: 10.1002/jcc.23438
– ident: ref36
  doi: 10.1007/s00894-014-2251-3
– ident: ref30
  doi: 10.1007/3-540-45712-7_45
– ident: ref42
  doi: 10.1007/s00362-012-0443-4
– ident: ref23
  doi: 10.1002/jcc.21202
– ident: ref7
  doi: 10.1002/jcc.21334
– ident: ref8
  doi: 10.2174/1386207321666180213092018
– ident: ref35
  doi: 10.1093/bioinformatics/btt447
– ident: ref33
  doi: 10.1186/s13321-020-00440-9
– ident: ref31
  doi: 10.1016/j.asoc.2018.04.027
SSID ssj0024904
Score 2.3542528
Snippet In general, flexible ligand docking is used for docking simulations under the premise that the position of the binding site is already known, and meanwhile it...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2672
SubjectTerms Algorithms
autodock
Binding sites
Birds
diversity-controlled strategy
Docking
Flexible ligand docking
Intelligence
Ligands
Optimization
Optimization algorithms
Particle swarm optimization
Proteins
quantum particle swarm optimization
search algorithm
Search algorithms
Search methods
Search problems
Software algorithms
solis and wets local search
Swarm intelligence
Trajectory
Title An Effective Swarm Intelligence Optimization Algorithm for Flexible Ligand Docking
URI https://ieeexplore.ieee.org/document/9511081
https://www.proquest.com/docview/2723901130
https://www.proquest.com/docview/2560297164
Volume 19
WOSCitedRecordID wos000866522800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024904
  issn: 1545-5963
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4xBNJe2A9AKwPkSTxNBOzYsePHglYxCTG0gdS3yE4cqNSmU2lB--9354SCxDSJtyhxosR39n1n574P4EDnUqhK2qS2Tieq5nWCaZBMeC21txV5lYtiE-biIh8O7eUKHC5rYUII8eezcESHcS-_mpYLWio7RjQgONVZvzFGt7VaT7x6NkoFEiJIMvSqbgdTcHt8dXpygplgKo5IVMsYEt6TSposJQXlZ-Eo6qu8mJRjpBm8e907voeNDlGyfusCH2AlNB9hvdWY_LMJP_sNaymKcV5jvx7cbMK-P-PhZD9w0ph01ZisP76Zzkbz2wlDMMsGxJbpx4Gdj25cUzGMSLSyvgXXg29Xp2dJJ6SQlIjO5olSUuGHSxmqUHMTtPWitpUyPmAKphEkImpRofY4BkuROW1KISueWs9dpqSX27DaTJvwCViea48YU9RBaeWdyF0ZUjyTZ7ay3Mse8Mf-LMqOZZzELsZFzDa4LcgaBVmj6KzRg6_LW363FBv_a7xJfb5s2HV3D3YfjVZ0g_CuSE1KKzoYpXvwZXkZhw_tibgmTBfYBhFfSjRaauffT_4Mb1OqeIi_le3C6ny2CHuwVt7PR3ezffTEYb4fPfEvkoDVgQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8htgle2AeglbHhSTwhAv7Khx8LWgWi6xAUibfIThxWqU1RaTftv9-dEzokpkl7ixInSnxn3-_s3O8HsJ9kSuhSmagyNol0xasI0yAV8UolzpTkVTaITaSDQXZ7ay5X4HBZC-O9Dz-f-SM6DHv55bRY0FLZMaIBwanO-kWsteRNtdYfZj0TxAIJE0Qx-lW7hym4OR6enpxgLijFEclqpSlJ7ymt0liShvKTgBQUVp5NyyHW9F7_31u-gY0WU7Ju4wRvYcXX7-BVozL5axOuujVrSIpxZmPXP-1sws6fMHGybzhtTNp6TNYd301no_n3CUM4y3rEl-nGnvVHd7YuGcYkWlvfgpvel-HpWdRKKUQF4rN5pLXS-OFK-dJXPPWJcaIypU6dxyQsQZiIuEX7yuEoLERsk7QQquTSOG5jrZzahtV6Wvv3wLIscYgyReV1op0VmS28xDNZbErDneoAf-zPvGh5xknuYpyHfIObnKyRkzXy1hodOFject-QbPyr8Sb1-bJh290d2H00Wt4Ow4dcppLWdDBOd-Dz8jIOINoVsbWfLrANYj5JRFp65-9P3oO1s-HXft4_H1x8gHVJ9Q_hJ7NdWJ3PFv4jvCx-zEcPs0_BH38Dz7PX4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Effective+Swarm+Intelligence+Optimization+Algorithm+for+Flexible+Ligand+Docking&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Li%2C+Chao&rft.au=Sun%2C+Jun&rft.au=Li-Wei%2C+Li&rft.au=Wu%2C+Xiaojun&rft.date=2022-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1545-5963&rft.eissn=1557-9964&rft.volume=19&rft.issue=5&rft.spage=2672&rft_id=info:doi/10.1109%2FTCBB.2021.3103777&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon