Distributed stochastic mirror descent algorithm for resource allocation problem

In this paper, we consider a distributed resource allocation problem of minimizing a global convex function formed by a sum of local convex functions with coupling constraints. Based on neighbor communication and stochastic gradient, a distributed stochastic mirror descent algorithm is designed for...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Control theory and technology Ročník 18; číslo 4; s. 339 - 347
Hlavní autoři: Wang, Yinghui, Tu, Zhipeng, Qin, Huashu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Guangzhou South China University of Technology and Academy of Mathematics and Systems Science, CAS 01.12.2020
Key Lab of Systems and Control, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100190,China
Témata:
ISSN:2095-6983, 2198-0942
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we consider a distributed resource allocation problem of minimizing a global convex function formed by a sum of local convex functions with coupling constraints. Based on neighbor communication and stochastic gradient, a distributed stochastic mirror descent algorithm is designed for the distributed resource allocation problem. Sublinear convergence to an optimal solution of the proposed algorithm is given when the second moments of the gradient noises are summable. A numerical example is also given to illustrate the effectiveness of the proposed algorithm.
ISSN:2095-6983
2198-0942
DOI:10.1007/s11768-020-00018-8