Neural-Network-Based Control for Discrete-Time Nonlinear Systems with Input Saturation Under Stochastic Communication Protocol
In this paper, an adaptive dynamic programming (ADP) strategy is investigated for discrete-time nonlinear systems with unknown nonlinear dynamics subject to input saturation. To save the communication resources between the controller and the actuators, stochastic communication protocols (SCPs) are a...
Saved in:
| Published in: | IEEE/CAA journal of automatica sinica Vol. 8; no. 4; pp. 766 - 778 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Piscataway
Chinese Association of Automation (CAA)
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China%School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne 3122, Victoria, Australia%Institute of Complex Systems and Advanced Control, Northeast Petroleum University, Daqing 163318, China |
| Subjects: | |
| ISSN: | 2329-9266, 2329-9274 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, an adaptive dynamic programming (ADP) strategy is investigated for discrete-time nonlinear systems with unknown nonlinear dynamics subject to input saturation. To save the communication resources between the controller and the actuators, stochastic communication protocols (SCPs) are adopted to schedule the control signal, and therefore the closed-loop system is essentially a protocol-induced switching system. A neural network (NN)-based identifier with a robust term is exploited for approximating the unknown nonlinear system, and a set of switch-based updating rules with an additional tunable parameter of NN weights are developed with the help of the gradient descent. By virtue of a novel Lyapunov function, a sufficient condition is proposed to achieve the stability of both system identification errors and the update dynamics of NN weights. Then, a value iterative ADP algorithm in an offline way is proposed to solve the optimal control of protocol-induced switching systems with saturation constraints, and the convergence is profoundly discussed in light of mathematical induction. Furthermore, an actor-critic NN scheme is developed to approximate the control law and the proposed performance index function in the framework of ADP, and the stability of the closed-loop system is analyzed in view of the Lyapunov theory. Finally, the numerical simulation results are presented to demonstrate the effectiveness of the proposed control scheme. |
|---|---|
| AbstractList | In this paper, an adaptive dynamic programming (ADP) strategy is investigated for discrete-time nonlinear systems with unknown nonlinear dynamics subject to input saturation. To save the communication resources between the controller and the actuators, stochastic communication protocols (SCPs) are adopted to schedule the control signal, and therefore the closed-loop system is essentially a protocol-induced switching system. A neural network (NN)-based identifier with a robust term is exploited for approximating the unknown nonlinear system, and a set of switch-based updating rules with an additional tunable parameter of NN weights are developed with the help of the gradient descent. By virtue of a novel Lyapunov function, a sufficient condition is proposed to achieve the stability of both system identification errors and the update dynamics of NN weights. Then, a value iterative ADP algorithm in an offline way is proposed to solve the optimal control of protocol-induced switching systems with saturation constraints, and the convergence is profoundly discussed in light of mathematical induction. Furthermore, an actor-critic NN scheme is developed to approximate the control law and the proposed performance index function in the framework of ADP, and the stability of the closed-loop system is analyzed in view of the Lyapunov theory. Finally, the numerical simulation results are presented to demonstrate the effectiveness of the proposed control scheme. |
| Author | Ding, Derui Dong, Hongli Zhang, Xian-Ming Wang, Xueli |
| AuthorAffiliation | Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China%School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne 3122, Victoria, Australia%Institute of Complex Systems and Advanced Control, Northeast Petroleum University, Daqing 163318, China |
| AuthorAffiliation_xml | – name: Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China%School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne 3122, Victoria, Australia%Institute of Complex Systems and Advanced Control, Northeast Petroleum University, Daqing 163318, China |
| Author_xml | – sequence: 1 givenname: Xueli surname: Wang fullname: Wang, Xueli email: xuelywang@163.com organization: University of Shanghai for Science and Technology,Department of Control Science and Engineering,Shanghai,China,200093 – sequence: 2 givenname: Derui surname: Ding fullname: Ding, Derui email: dding@swin.edu.au organization: School of Software and Electrical Engineering, Swinburne University of Technology,Melbourne,Victoria,Australia,3122 – sequence: 3 givenname: Hongli surname: Dong fullname: Dong, Hongli email: shiningdhl@vip.126.com organization: Institute of Complex Systems and Advanced Control, Northeast Petroleum University,Daqing,China,163318 – sequence: 4 givenname: Xian-Ming surname: Zhang fullname: Zhang, Xian-Ming email: xianmingzhang@swin.edu.au organization: School of Software and Electrical Engineering, Swinburne University of Technology,Melbourne,Victoria,Australia,3122 |
| BookMark | eNp9kUFv1DAQhSNUJErpHYlLJG5IWcZ24jjHstBSVC1I254tx5mwLom92I622wO_HS-pitRDTzPSfO-NZt7r7Mg6i1n2lsCCEGg-fjtbLyhQsiAArKH0RXZMGW2Khtbl0WPP-avsNIRbACC0qnlTHmd_Vjh5NRQrjDvnfxWfVMAuXzobvRvy3vn8swnaY8Ti2oyYr5wdjEXl8_U-RBxDvjNxk1_a7RTztYrJLBpn8xvbYWKi0xsVotHJchwna_Q8_uFdGrnhTfayV0PA04d6kt2cf7lefi2uvl9cLs-uCs0ojwUTpeId05RpXbagkbakBqAadV3WuhKqAYEaOsHTYYLxVrEem6ZHxjiKnp1kH2bfnbK9sj_lrZu8TRvlfbe5a-V-1x7-ByVAmeD3M7z17veEIf6naQWEEcErkSiYKe1dCB57ufVmVH4vCchDKjKlIg-u8iGVJOFPJNrEfw-JXpnhOeG7WWgQ8XFPwypRcsr-AvJvnPg |
| CODEN | IJASJC |
| CitedBy_id | crossref_primary_10_1007_s11432_023_3818_3 crossref_primary_10_1109_TCSI_2022_3206370 crossref_primary_10_1016_j_inffus_2023_101814 crossref_primary_10_1109_TNNLS_2022_3178017 crossref_primary_10_1016_j_isatra_2023_04_018 crossref_primary_10_1109_TNSE_2022_3163258 crossref_primary_10_1049_cth2_12211 crossref_primary_10_1016_j_neucom_2021_11_103 crossref_primary_10_1016_j_ymssp_2025_113238 crossref_primary_10_3390_e25010043 crossref_primary_10_1007_s12555_021_0896_0 crossref_primary_10_1016_j_chaos_2024_114625 crossref_primary_10_1016_j_neunet_2024_106413 crossref_primary_10_1109_TSIPN_2021_3139351 crossref_primary_10_1109_TSMC_2024_3406563 crossref_primary_10_1109_TIV_2024_3451517 crossref_primary_10_1155_2022_4894714 crossref_primary_10_1016_j_eswa_2025_127706 crossref_primary_10_1016_j_jfranklin_2022_05_009 crossref_primary_10_1080_03081079_2022_2052063 crossref_primary_10_1016_j_ifacol_2023_10_1579 crossref_primary_10_1016_j_neucom_2021_12_057 crossref_primary_10_1080_00207721_2022_2083256 crossref_primary_10_1109_TNNLS_2022_3201521 crossref_primary_10_1016_j_neucom_2023_126905 crossref_primary_10_1016_j_neucom_2023_126276 crossref_primary_10_1049_cth2_12408 crossref_primary_10_1016_j_jfranklin_2024_107350 crossref_primary_10_1016_j_isatra_2022_01_002 crossref_primary_10_1007_s11071_022_07624_y crossref_primary_10_1049_cth2_12488 crossref_primary_10_1109_TASE_2022_3208016 crossref_primary_10_1109_JAS_2023_123588 crossref_primary_10_1109_TSMC_2025_3571783 crossref_primary_10_1080_00207721_2023_2209846 crossref_primary_10_1002_asjc_3236 crossref_primary_10_1002_rnc_5955 crossref_primary_10_1109_TICPS_2025_3557733 crossref_primary_10_1002_rnc_5831 crossref_primary_10_1049_cth2_12275 crossref_primary_10_1109_TSMC_2024_3421658 crossref_primary_10_1109_JIOT_2021_3084923 crossref_primary_10_1080_00207721_2022_2043483 crossref_primary_10_1109_JAS_2021_1004386 crossref_primary_10_1109_TSMC_2022_3220028 crossref_primary_10_1155_2022_1238020 crossref_primary_10_1109_TIV_2022_3184076 crossref_primary_10_3390_math12101426 crossref_primary_10_1109_JSYST_2023_3333823 crossref_primary_10_1109_TAES_2023_3276729 crossref_primary_10_1007_s40815_022_01434_5 crossref_primary_10_1109_JAS_2022_105542 crossref_primary_10_1109_JAS_2022_105941 crossref_primary_10_1016_j_neunet_2025_107885 crossref_primary_10_1109_JAS_2023_123453 crossref_primary_10_1007_s12555_021_1021_0 crossref_primary_10_1109_TCYB_2022_3166558 crossref_primary_10_1109_TCYB_2022_3164977 crossref_primary_10_1016_j_neucom_2023_126528 crossref_primary_10_1177_01423312231196639 crossref_primary_10_1109_TFUZZ_2024_3370693 crossref_primary_10_1002_rnc_5906 crossref_primary_10_1016_j_neucom_2025_129968 crossref_primary_10_1109_JAS_2021_1004359 crossref_primary_10_1109_JAS_2023_123927 crossref_primary_10_1109_TCYB_2025_3562390 crossref_primary_10_1109_TIV_2023_3331905 crossref_primary_10_1016_j_jfranklin_2024_107333 crossref_primary_10_1109_TIV_2023_3335866 crossref_primary_10_1109_TCE_2023_3241684 crossref_primary_10_1016_j_ymssp_2024_111301 crossref_primary_10_1109_JAS_2023_123843 crossref_primary_10_1007_s11071_021_07098_4 |
| Cites_doi | 10.1109/TCYB.2015.2492242 10.1109/JAS.2019.1911453 10.1109/TNN.2009.2027233 10.1109/JAS.2017.7510784 10.1109/TSMC.2020.3041121 10.1109/TNNLS.2015.2409301 10.1109/JAS.2020.1003063 10.1109/TSMCB.2008.924139 10.1109/TIE.2017.2698377 10.1109/TCYB.2020.2982168 10.1016/j.ins.2012.07.006 10.1109/TNNLS.2014.2305841 10.1007/s11432-019-2680-1 10.1109/TNNLS.2015.2411671 10.1016/j.automatica.2012.02.029 10.1109/72.623201 10.1109/JAS.2019.1911342 10.1109/TCYB.2015.2417170 10.1109/TNNLS.2016.2531089 10.1109/TIE.2014.2301770 10.1016/j.sysconle.2014.05.001 10.1016/j.ins.2019.05.071 10.1016/j.neunet.2009.06.014 10.1016/j.cam.2014.01.021 10.1016/j.automatica.2015.10.045 10.1016/j.automatica.2019.04.025 10.1109/87.998034 10.1109/TSMCB.2008.926614 10.1109/TIE.2017.2694349 10.1109/TNNLS.2013.2276571 10.1109/TNNLS.2013.2281663 10.1109/TNN.1998.712192 10.1109/TNNLS.2014.2360724 10.1109/TAC.2006.878720 10.1109/TNNLS.2017.2755501 10.1109/TIE.2016.2597763 10.1109/TNNLS.2015.2490698 10.1016/j.automatica.2004.11.034 10.1002/9780470182963 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1109/JAS.2021.1003922 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2329-9274 |
| EndPage | 778 |
| ExternalDocumentID | zdhxb_ywb202104004 10_1109_JAS_2021_1003922 9358462 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Australian Research Council grantid: DP190101557 funderid: 10.13039/501100000923 – fundername: (This work was supported in part by the Australian Research Council Discovery Early Career Researcher Award); (and Australian Research Council); Recommended by Associate Editor Hongyi Li; Corresponding author.Derui Ding. funderid: (This work was supported in part by the Australian Research Council Discovery Early Career Researcher Award); (and Australian Research Council); Recommended by Associate Editor Hongyi Li; Corresponding author.Derui Ding. |
| GroupedDBID | -0I -0Y -SI -S~ 0R~ 4.4 5VR 6IK 92M 97E 9D9 9DI AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AFUIB AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CAJEI EBS EJD IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ Q-- RIA RIE RT9 T8Y TCJ TGT U1F U1G U5I U5S AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D 2B. 4A8 92I 93N PSX R-I RIG |
| ID | FETCH-LOGICAL-c326t-384a6d3c23cc4b0ce2b17002cec747c58a908ec0d86257836ba3fe99fe336e8f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 86 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000628913100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2329-9266 |
| IngestDate | Thu May 29 04:10:31 EDT 2025 Sun Nov 30 05:40:31 EST 2025 Sat Nov 29 03:31:05 EST 2025 Tue Nov 18 21:29:43 EST 2025 Wed Aug 27 02:05:26 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | neural network (NN) constrained inputs stochastic communication protocols (SCPs) Adaptive dynamic programming (ADP) suboptimal control |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c326t-384a6d3c23cc4b0ce2b17002cec747c58a908ec0d86257836ba3fe99fe336e8f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2501318658 |
| PQPubID | 2040495 |
| PageCount | 13 |
| ParticipantIDs | wanfang_journals_zdhxb_ywb202104004 crossref_primary_10_1109_JAS_2021_1003922 crossref_citationtrail_10_1109_JAS_2021_1003922 proquest_journals_2501318658 ieee_primary_9358462 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE/CAA journal of automatica sinica |
| PublicationTitleAbbrev | JAS |
| PublicationTitle_FL | IEEE/CAA Journal of Automatica Sinica |
| PublicationYear | 2021 |
| Publisher | Chinese Association of Automation (CAA) The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China%School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne 3122, Victoria, Australia%Institute of Complex Systems and Advanced Control, Northeast Petroleum University, Daqing 163318, China |
| Publisher_xml | – name: Chinese Association of Automation (CAA) – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China%School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne 3122, Victoria, Australia%Institute of Complex Systems and Advanced Control, Northeast Petroleum University, Daqing 163318, China |
| References | ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ding (ref35) 2019; 50 ref33 ref11 ref32 yuan (ref21) 2018; 49 ref2 ref1 ref39 ref17 ref38 ref16 ref19 powell (ref18) 2007 ref24 ref23 song (ref42) 0 ref26 ref25 ref20 ref41 ref22 ref44 song (ref10) 2019; 99 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 bertsekas (ref13) 1996 ref40 |
| References_xml | – volume: 99 start-page: 1 year: 2019 ident: ref10 article-title: Discrete-time non-zero-sum games with completely unknown dynamics publication-title: IEEE Trans Cybern – ident: ref17 doi: 10.1109/TCYB.2015.2492242 – ident: ref3 doi: 10.1109/JAS.2019.1911453 – ident: ref8 doi: 10.1109/TNN.2009.2027233 – ident: ref1 doi: 10.1109/JAS.2017.7510784 – ident: ref29 doi: 10.1109/TSMC.2020.3041121 – ident: ref26 doi: 10.1109/TNNLS.2015.2409301 – ident: ref23 doi: 10.1109/JAS.2020.1003063 – ident: ref12 doi: 10.1109/TSMCB.2008.924139 – ident: ref5 doi: 10.1109/TIE.2017.2698377 – ident: ref6 doi: 10.1109/TCYB.2020.2982168 – ident: ref43 doi: 10.1016/j.ins.2012.07.006 – ident: ref36 doi: 10.1109/TNNLS.2014.2305841 – ident: ref33 doi: 10.1007/s11432-019-2680-1 – ident: ref7 doi: 10.1109/TNNLS.2015.2411671 – ident: ref39 doi: 10.1016/j.automatica.2012.02.029 – ident: ref19 doi: 10.1109/72.623201 – ident: ref9 doi: 10.1109/JAS.2019.1911342 – year: 0 ident: ref42 article-title: Convergence analysis for an identifier-based adaptive dynamic programming algorithm publication-title: Proc the 34th Chinese Control Conf – year: 1996 ident: ref13 publication-title: Neuro-Dynamic Programming – ident: ref24 doi: 10.1109/TCYB.2015.2417170 – ident: ref25 doi: 10.1109/TNNLS.2016.2531089 – ident: ref11 doi: 10.1109/TIE.2014.2301770 – ident: ref30 doi: 10.1016/j.sysconle.2014.05.001 – volume: 50 start-page: 1 year: 2019 ident: ref35 article-title: Neural-network-based consensus control for multi-agent systems with input constraints: The event-triggered case publication-title: IEEE Trans Cybern – ident: ref34 doi: 10.1016/j.ins.2019.05.071 – ident: ref40 doi: 10.1016/j.neunet.2009.06.014 – volume: 49 start-page: 1 year: 2018 ident: ref21 article-title: Near-optimal resilient control strategy design for state-saturated networked systems under stochastic communication protocol publication-title: IEEE Trans Cybern – ident: ref38 doi: 10.1016/j.cam.2014.01.021 – ident: ref32 doi: 10.1016/j.automatica.2015.10.045 – ident: ref37 doi: 10.1016/j.automatica.2019.04.025 – ident: ref31 doi: 10.1109/87.998034 – ident: ref15 doi: 10.1109/TSMCB.2008.926614 – ident: ref4 doi: 10.1109/TIE.2017.2694349 – ident: ref28 doi: 10.1109/TNNLS.2013.2276571 – ident: ref44 doi: 10.1109/TNNLS.2013.2281663 – ident: ref14 doi: 10.1109/TNN.1998.712192 – ident: ref2 doi: 10.1109/TNNLS.2014.2360724 – ident: ref41 doi: 10.1109/TAC.2006.878720 – ident: ref16 doi: 10.1109/TNNLS.2017.2755501 – ident: ref27 doi: 10.1109/TIE.2016.2597763 – ident: ref20 doi: 10.1109/TNNLS.2015.2490698 – ident: ref22 doi: 10.1016/j.automatica.2004.11.034 – year: 2007 ident: ref18 publication-title: Approximate Dynamic Programming doi: 10.1002/9780470182963 |
| SSID | ssj0001257694 |
| Score | 2.4715123 |
| Snippet | In this paper, an adaptive dynamic programming (ADP) strategy is investigated for discrete-time nonlinear systems with unknown nonlinear dynamics subject to... |
| SourceID | wanfang proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 766 |
| SubjectTerms | Actuators Adaptive dynamic programming (ADP) Adaptive systems Algorithms Artificial neural networks Closed loop systems Communication constrained inputs Control systems Control theory Discrete time systems Dynamic programming Dynamic stability Dynamical systems Feedback control Heuristic algorithms Iterative methods Liapunov functions neural network (NN) Neural networks Nonlinear control Nonlinear dynamical systems Nonlinear dynamics Nonlinear systems Optimal control Performance indices Protocol Protocol (computers) Protocols Robustness (mathematics) Saturation Schedules Stability analysis stochastic communication protocols (SCPs) suboptimal control Switching System identification |
| Title | Neural-Network-Based Control for Discrete-Time Nonlinear Systems with Input Saturation Under Stochastic Communication Protocol |
| URI | https://ieeexplore.ieee.org/document/9358462 https://www.proquest.com/docview/2501318658 https://d.wanfangdata.com.cn/periodical/zdhxb-ywb202104004 |
| Volume | 8 |
| WOSCitedRecordID | wos000628913100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2329-9274 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001257694 issn: 2329-9266 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSxxBEG5UFMwhakzIxgcN8RKws_Pc6T76RCUswip4G_pRE4VlRtZZNTnkt6eqZ3bdBRG8DXRPM_DVVH_VXfUVY3sQSi0TBcI6SEUSgUQ_aIwIjVPKqSiExBcK_8r6fXlzoy4X2P60FgYAfPIZ_KRHf5fvKjumo7Iu3dkl5HAXsyxrarVmzlOQOfu-h8gRlFC48UxuJQPVvTgYYCwYhZQUgIwgmtuFfFuVOYa58qTLQpe_Z7aa07X3feQ6-9hSSn7Q2MAGW4DyE_swIzS4yf6RBocein6T9C0Oce9y_KhJU-fIW_nxHfoPJNCCakJ4vxHQ0CPeKppzOq_l5-X9uOYD0gL1gHLfNYkP6sreahJ85nP1JvxyVOFQNfzMrk9Pro7ORNt5QVikc7WIZaJ7LrZRbG1iAguRIR2_yILF8MOmUqtAgg0cxkMp1YEYHRegVAFx3ANZxF_YUlmV8JVqwh0u6SI0FpfEppBZ4UyKcUzPalckaYd1J0jktpUlp-4Yw9yHJ4HKEbucsMtb7Drsx_SN-0aS4425m4TQdF4LTodtT8DO23_2IUcyGKKHQ0rWYd9bA3gZ_etun03-58nQ8t7zfXt97S22SlOa7J5ttlSPxrDDlu1jffcw2vVG-x9XI-w6 |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEF5KVawP_qrS06oL-iK4XrLZXHcfa7W0eobCVehb2B8TWziScs1Z9cG_3ZlN7rwDEXwL7GYJfJPZb3ZnvmHsFaTaamVA-AC5UBI0-kHnROqCMcHIFFQsFB7vFYU-OzMnG-zNshYGAGLyGbylx3iXHxo_p6OyId3ZKXK4N3KlZNpVa62cqCB3jp0PkSUYYXDrWdxLJmb4cX-C0aBMKS0AOYFc24diY5U1jnnr2taVrb-ubDaH9_7vM--zuz2p5PudFTxgG1A_ZHdWpAa32S9S4bBTUXRp3-Id7l6BH3SJ6hyZK39_gR4EKbSgqhBedBIadsZ7TXNOJ7b8uL6ct3xCaqARUh77JvFJ2_hzS5LPfK3ihJ_MGhxqpo_Yl8MPpwdHou-9IDwSulZkWtlRyLzMvFcu8SAdKflJDx4DEJ9raxINPgkYEeVUCeJsVoExFWTZCHSVPWabdVPDDlWFB1wySDSXoDJX6b0quBwjmZG3oVL5gA0XSJS-Fyan_hjTMgYoiSkRu5KwK3vsBuz18o3LTpTjH3O3CaHlvB6cAdtdgF32f-1ViXQwRR-HpGzAXvYG8Gf0Zzj_7sof146Wj77vyd_XfsFuH51-Hpfj4-LTU7ZF07tcn1222c7m8Izd9N_ai6vZ82jAvwHBnO-B |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural-Network-Based+Control+for+Discrete-Time+Nonlinear+Systems+with+Input+Saturation+Under+Stochastic+Communication+Protocol&rft.jtitle=IEEE%2FCAA+journal+of+automatica+sinica&rft.au=Wang%2C+Xueli&rft.au=Ding%2C+Derui&rft.au=Dong%2C+Hongli&rft.au=Zhang%2C+Xian-Ming&rft.date=2021-04-01&rft.pub=Chinese+Association+of+Automation+%28CAA%29&rft.issn=2329-9266&rft.volume=8&rft.issue=4&rft.spage=766&rft.epage=778&rft_id=info:doi/10.1109%2FJAS.2021.1003922&rft.externalDocID=9358462 |
| thumbnail_s | http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb-ywb%2Fzdhxb-ywb.jpg |