Neural-Network-Based Control for Discrete-Time Nonlinear Systems with Input Saturation Under Stochastic Communication Protocol

In this paper, an adaptive dynamic programming (ADP) strategy is investigated for discrete-time nonlinear systems with unknown nonlinear dynamics subject to input saturation. To save the communication resources between the controller and the actuators, stochastic communication protocols (SCPs) are a...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE/CAA journal of automatica sinica Ročník 8; číslo 4; s. 766 - 778
Hlavní autori: Wang, Xueli, Ding, Derui, Dong, Hongli, Zhang, Xian-Ming
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway Chinese Association of Automation (CAA) 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China%School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne 3122, Victoria, Australia%Institute of Complex Systems and Advanced Control, Northeast Petroleum University, Daqing 163318, China
Predmet:
ISSN:2329-9266, 2329-9274
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, an adaptive dynamic programming (ADP) strategy is investigated for discrete-time nonlinear systems with unknown nonlinear dynamics subject to input saturation. To save the communication resources between the controller and the actuators, stochastic communication protocols (SCPs) are adopted to schedule the control signal, and therefore the closed-loop system is essentially a protocol-induced switching system. A neural network (NN)-based identifier with a robust term is exploited for approximating the unknown nonlinear system, and a set of switch-based updating rules with an additional tunable parameter of NN weights are developed with the help of the gradient descent. By virtue of a novel Lyapunov function, a sufficient condition is proposed to achieve the stability of both system identification errors and the update dynamics of NN weights. Then, a value iterative ADP algorithm in an offline way is proposed to solve the optimal control of protocol-induced switching systems with saturation constraints, and the convergence is profoundly discussed in light of mathematical induction. Furthermore, an actor-critic NN scheme is developed to approximate the control law and the proposed performance index function in the framework of ADP, and the stability of the closed-loop system is analyzed in view of the Lyapunov theory. Finally, the numerical simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
AbstractList In this paper, an adaptive dynamic programming (ADP) strategy is investigated for discrete-time nonlinear systems with unknown nonlinear dynamics subject to input saturation. To save the communication resources between the controller and the actuators, stochastic communication protocols (SCPs) are adopted to schedule the control signal, and therefore the closed-loop system is essentially a protocol-induced switching system. A neural network (NN)-based identifier with a robust term is exploited for approximating the unknown nonlinear system, and a set of switch-based updating rules with an additional tunable parameter of NN weights are developed with the help of the gradient descent. By virtue of a novel Lyapunov function, a sufficient condition is proposed to achieve the stability of both system identification errors and the update dynamics of NN weights. Then, a value iterative ADP algorithm in an offline way is proposed to solve the optimal control of protocol-induced switching systems with saturation constraints, and the convergence is profoundly discussed in light of mathematical induction. Furthermore, an actor-critic NN scheme is developed to approximate the control law and the proposed performance index function in the framework of ADP, and the stability of the closed-loop system is analyzed in view of the Lyapunov theory. Finally, the numerical simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
Author Ding, Derui
Dong, Hongli
Zhang, Xian-Ming
Wang, Xueli
AuthorAffiliation Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China%School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne 3122, Victoria, Australia%Institute of Complex Systems and Advanced Control, Northeast Petroleum University, Daqing 163318, China
AuthorAffiliation_xml – name: Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China%School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne 3122, Victoria, Australia%Institute of Complex Systems and Advanced Control, Northeast Petroleum University, Daqing 163318, China
Author_xml – sequence: 1
  givenname: Xueli
  surname: Wang
  fullname: Wang, Xueli
  email: xuelywang@163.com
  organization: University of Shanghai for Science and Technology,Department of Control Science and Engineering,Shanghai,China,200093
– sequence: 2
  givenname: Derui
  surname: Ding
  fullname: Ding, Derui
  email: dding@swin.edu.au
  organization: School of Software and Electrical Engineering, Swinburne University of Technology,Melbourne,Victoria,Australia,3122
– sequence: 3
  givenname: Hongli
  surname: Dong
  fullname: Dong, Hongli
  email: shiningdhl@vip.126.com
  organization: Institute of Complex Systems and Advanced Control, Northeast Petroleum University,Daqing,China,163318
– sequence: 4
  givenname: Xian-Ming
  surname: Zhang
  fullname: Zhang, Xian-Ming
  email: xianmingzhang@swin.edu.au
  organization: School of Software and Electrical Engineering, Swinburne University of Technology,Melbourne,Victoria,Australia,3122
BookMark eNp9kUFv1DAQhSNUJErpHYlLJG5IWcZ24jjHstBSVC1I254tx5mwLom92I622wO_HS-pitRDTzPSfO-NZt7r7Mg6i1n2lsCCEGg-fjtbLyhQsiAArKH0RXZMGW2Khtbl0WPP-avsNIRbACC0qnlTHmd_Vjh5NRQrjDvnfxWfVMAuXzobvRvy3vn8swnaY8Ti2oyYr5wdjEXl8_U-RBxDvjNxk1_a7RTztYrJLBpn8xvbYWKi0xsVotHJchwna_Q8_uFdGrnhTfayV0PA04d6kt2cf7lefi2uvl9cLs-uCs0ojwUTpeId05RpXbagkbakBqAadV3WuhKqAYEaOsHTYYLxVrEem6ZHxjiKnp1kH2bfnbK9sj_lrZu8TRvlfbe5a-V-1x7-ByVAmeD3M7z17veEIf6naQWEEcErkSiYKe1dCB57ufVmVH4vCchDKjKlIg-u8iGVJOFPJNrEfw-JXpnhOeG7WWgQ8XFPwypRcsr-AvJvnPg
CODEN IJASJC
CitedBy_id crossref_primary_10_1007_s11432_023_3818_3
crossref_primary_10_1109_TCSI_2022_3206370
crossref_primary_10_1016_j_inffus_2023_101814
crossref_primary_10_1109_TNNLS_2022_3178017
crossref_primary_10_1016_j_isatra_2023_04_018
crossref_primary_10_1109_TNSE_2022_3163258
crossref_primary_10_1049_cth2_12211
crossref_primary_10_1016_j_neucom_2021_11_103
crossref_primary_10_1016_j_ymssp_2025_113238
crossref_primary_10_3390_e25010043
crossref_primary_10_1007_s12555_021_0896_0
crossref_primary_10_1016_j_chaos_2024_114625
crossref_primary_10_1016_j_neunet_2024_106413
crossref_primary_10_1109_TSIPN_2021_3139351
crossref_primary_10_1109_TSMC_2024_3406563
crossref_primary_10_1109_TIV_2024_3451517
crossref_primary_10_1155_2022_4894714
crossref_primary_10_1016_j_eswa_2025_127706
crossref_primary_10_1016_j_jfranklin_2022_05_009
crossref_primary_10_1080_03081079_2022_2052063
crossref_primary_10_1016_j_ifacol_2023_10_1579
crossref_primary_10_1016_j_neucom_2021_12_057
crossref_primary_10_1080_00207721_2022_2083256
crossref_primary_10_1109_TNNLS_2022_3201521
crossref_primary_10_1016_j_neucom_2023_126905
crossref_primary_10_1016_j_neucom_2023_126276
crossref_primary_10_1049_cth2_12408
crossref_primary_10_1016_j_jfranklin_2024_107350
crossref_primary_10_1016_j_isatra_2022_01_002
crossref_primary_10_1007_s11071_022_07624_y
crossref_primary_10_1049_cth2_12488
crossref_primary_10_1109_TASE_2022_3208016
crossref_primary_10_1109_JAS_2023_123588
crossref_primary_10_1109_TSMC_2025_3571783
crossref_primary_10_1080_00207721_2023_2209846
crossref_primary_10_1002_asjc_3236
crossref_primary_10_1002_rnc_5955
crossref_primary_10_1109_TICPS_2025_3557733
crossref_primary_10_1002_rnc_5831
crossref_primary_10_1049_cth2_12275
crossref_primary_10_1109_TSMC_2024_3421658
crossref_primary_10_1109_JIOT_2021_3084923
crossref_primary_10_1080_00207721_2022_2043483
crossref_primary_10_1109_JAS_2021_1004386
crossref_primary_10_1109_TSMC_2022_3220028
crossref_primary_10_1155_2022_1238020
crossref_primary_10_1109_TIV_2022_3184076
crossref_primary_10_3390_math12101426
crossref_primary_10_1109_JSYST_2023_3333823
crossref_primary_10_1109_TAES_2023_3276729
crossref_primary_10_1007_s40815_022_01434_5
crossref_primary_10_1109_JAS_2022_105542
crossref_primary_10_1109_JAS_2022_105941
crossref_primary_10_1016_j_neunet_2025_107885
crossref_primary_10_1109_JAS_2023_123453
crossref_primary_10_1007_s12555_021_1021_0
crossref_primary_10_1109_TCYB_2022_3166558
crossref_primary_10_1109_TCYB_2022_3164977
crossref_primary_10_1016_j_neucom_2023_126528
crossref_primary_10_1177_01423312231196639
crossref_primary_10_1109_TFUZZ_2024_3370693
crossref_primary_10_1002_rnc_5906
crossref_primary_10_1016_j_neucom_2025_129968
crossref_primary_10_1109_JAS_2021_1004359
crossref_primary_10_1109_JAS_2023_123927
crossref_primary_10_1109_TCYB_2025_3562390
crossref_primary_10_1109_TIV_2023_3331905
crossref_primary_10_1016_j_jfranklin_2024_107333
crossref_primary_10_1109_TIV_2023_3335866
crossref_primary_10_1109_TCE_2023_3241684
crossref_primary_10_1016_j_ymssp_2024_111301
crossref_primary_10_1109_JAS_2023_123843
crossref_primary_10_1007_s11071_021_07098_4
Cites_doi 10.1109/TCYB.2015.2492242
10.1109/JAS.2019.1911453
10.1109/TNN.2009.2027233
10.1109/JAS.2017.7510784
10.1109/TSMC.2020.3041121
10.1109/TNNLS.2015.2409301
10.1109/JAS.2020.1003063
10.1109/TSMCB.2008.924139
10.1109/TIE.2017.2698377
10.1109/TCYB.2020.2982168
10.1016/j.ins.2012.07.006
10.1109/TNNLS.2014.2305841
10.1007/s11432-019-2680-1
10.1109/TNNLS.2015.2411671
10.1016/j.automatica.2012.02.029
10.1109/72.623201
10.1109/JAS.2019.1911342
10.1109/TCYB.2015.2417170
10.1109/TNNLS.2016.2531089
10.1109/TIE.2014.2301770
10.1016/j.sysconle.2014.05.001
10.1016/j.ins.2019.05.071
10.1016/j.neunet.2009.06.014
10.1016/j.cam.2014.01.021
10.1016/j.automatica.2015.10.045
10.1016/j.automatica.2019.04.025
10.1109/87.998034
10.1109/TSMCB.2008.926614
10.1109/TIE.2017.2694349
10.1109/TNNLS.2013.2276571
10.1109/TNNLS.2013.2281663
10.1109/TNN.1998.712192
10.1109/TNNLS.2014.2360724
10.1109/TAC.2006.878720
10.1109/TNNLS.2017.2755501
10.1109/TIE.2016.2597763
10.1109/TNNLS.2015.2490698
10.1016/j.automatica.2004.11.034
10.1002/9780470182963
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1109/JAS.2021.1003922
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2329-9274
EndPage 778
ExternalDocumentID zdhxb_ywb202104004
10_1109_JAS_2021_1003922
9358462
Genre orig-research
GrantInformation_xml – fundername: Australian Research Council
  grantid: DP190101557
  funderid: 10.13039/501100000923
– fundername: (This work was supported in part by the Australian Research Council Discovery Early Career Researcher Award); (and Australian Research Council); Recommended by Associate Editor Hongyi Li; Corresponding author.Derui Ding.
  funderid: (This work was supported in part by the Australian Research Council Discovery Early Career Researcher Award); (and Australian Research Council); Recommended by Associate Editor Hongyi Li; Corresponding author.Derui Ding.
GroupedDBID -0I
-0Y
-SI
-S~
0R~
4.4
5VR
6IK
92M
97E
9D9
9DI
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AFUIB
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
Q--
RIA
RIE
RT9
T8Y
TCJ
TGT
U1F
U1G
U5I
U5S
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
R-I
RIG
ID FETCH-LOGICAL-c326t-384a6d3c23cc4b0ce2b17002cec747c58a908ec0d86257836ba3fe99fe336e8f3
IEDL.DBID RIE
ISICitedReferencesCount 86
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000628913100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2329-9266
IngestDate Thu May 29 04:10:31 EDT 2025
Sun Nov 30 05:40:31 EST 2025
Sat Nov 29 03:31:05 EST 2025
Tue Nov 18 21:29:43 EST 2025
Wed Aug 27 02:05:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords neural network (NN)
constrained inputs
stochastic communication protocols (SCPs)
Adaptive dynamic programming (ADP)
suboptimal control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c326t-384a6d3c23cc4b0ce2b17002cec747c58a908ec0d86257836ba3fe99fe336e8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2501318658
PQPubID 2040495
PageCount 13
ParticipantIDs wanfang_journals_zdhxb_ywb202104004
crossref_primary_10_1109_JAS_2021_1003922
crossref_citationtrail_10_1109_JAS_2021_1003922
proquest_journals_2501318658
ieee_primary_9358462
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE/CAA journal of automatica sinica
PublicationTitleAbbrev JAS
PublicationTitle_FL IEEE/CAA Journal of Automatica Sinica
PublicationYear 2021
Publisher Chinese Association of Automation (CAA)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China%School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne 3122, Victoria, Australia%Institute of Complex Systems and Advanced Control, Northeast Petroleum University, Daqing 163318, China
Publisher_xml – name: Chinese Association of Automation (CAA)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China%School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne 3122, Victoria, Australia%Institute of Complex Systems and Advanced Control, Northeast Petroleum University, Daqing 163318, China
References ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ding (ref35) 2019; 50
ref33
ref11
ref32
yuan (ref21) 2018; 49
ref2
ref1
ref39
ref17
ref38
ref16
ref19
powell (ref18) 2007
ref24
ref23
song (ref42) 0
ref26
ref25
ref20
ref41
ref22
ref44
song (ref10) 2019; 99
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
bertsekas (ref13) 1996
ref40
References_xml – volume: 99
  start-page: 1
  year: 2019
  ident: ref10
  article-title: Discrete-time non-zero-sum games with completely unknown dynamics
  publication-title: IEEE Trans Cybern
– ident: ref17
  doi: 10.1109/TCYB.2015.2492242
– ident: ref3
  doi: 10.1109/JAS.2019.1911453
– ident: ref8
  doi: 10.1109/TNN.2009.2027233
– ident: ref1
  doi: 10.1109/JAS.2017.7510784
– ident: ref29
  doi: 10.1109/TSMC.2020.3041121
– ident: ref26
  doi: 10.1109/TNNLS.2015.2409301
– ident: ref23
  doi: 10.1109/JAS.2020.1003063
– ident: ref12
  doi: 10.1109/TSMCB.2008.924139
– ident: ref5
  doi: 10.1109/TIE.2017.2698377
– ident: ref6
  doi: 10.1109/TCYB.2020.2982168
– ident: ref43
  doi: 10.1016/j.ins.2012.07.006
– ident: ref36
  doi: 10.1109/TNNLS.2014.2305841
– ident: ref33
  doi: 10.1007/s11432-019-2680-1
– ident: ref7
  doi: 10.1109/TNNLS.2015.2411671
– ident: ref39
  doi: 10.1016/j.automatica.2012.02.029
– ident: ref19
  doi: 10.1109/72.623201
– ident: ref9
  doi: 10.1109/JAS.2019.1911342
– year: 0
  ident: ref42
  article-title: Convergence analysis for an identifier-based adaptive dynamic programming algorithm
  publication-title: Proc the 34th Chinese Control Conf
– year: 1996
  ident: ref13
  publication-title: Neuro-Dynamic Programming
– ident: ref24
  doi: 10.1109/TCYB.2015.2417170
– ident: ref25
  doi: 10.1109/TNNLS.2016.2531089
– ident: ref11
  doi: 10.1109/TIE.2014.2301770
– ident: ref30
  doi: 10.1016/j.sysconle.2014.05.001
– volume: 50
  start-page: 1
  year: 2019
  ident: ref35
  article-title: Neural-network-based consensus control for multi-agent systems with input constraints: The event-triggered case
  publication-title: IEEE Trans Cybern
– ident: ref34
  doi: 10.1016/j.ins.2019.05.071
– ident: ref40
  doi: 10.1016/j.neunet.2009.06.014
– volume: 49
  start-page: 1
  year: 2018
  ident: ref21
  article-title: Near-optimal resilient control strategy design for state-saturated networked systems under stochastic communication protocol
  publication-title: IEEE Trans Cybern
– ident: ref38
  doi: 10.1016/j.cam.2014.01.021
– ident: ref32
  doi: 10.1016/j.automatica.2015.10.045
– ident: ref37
  doi: 10.1016/j.automatica.2019.04.025
– ident: ref31
  doi: 10.1109/87.998034
– ident: ref15
  doi: 10.1109/TSMCB.2008.926614
– ident: ref4
  doi: 10.1109/TIE.2017.2694349
– ident: ref28
  doi: 10.1109/TNNLS.2013.2276571
– ident: ref44
  doi: 10.1109/TNNLS.2013.2281663
– ident: ref14
  doi: 10.1109/TNN.1998.712192
– ident: ref2
  doi: 10.1109/TNNLS.2014.2360724
– ident: ref41
  doi: 10.1109/TAC.2006.878720
– ident: ref16
  doi: 10.1109/TNNLS.2017.2755501
– ident: ref27
  doi: 10.1109/TIE.2016.2597763
– ident: ref20
  doi: 10.1109/TNNLS.2015.2490698
– ident: ref22
  doi: 10.1016/j.automatica.2004.11.034
– year: 2007
  ident: ref18
  publication-title: Approximate Dynamic Programming
  doi: 10.1002/9780470182963
SSID ssj0001257694
Score 2.4715123
Snippet In this paper, an adaptive dynamic programming (ADP) strategy is investigated for discrete-time nonlinear systems with unknown nonlinear dynamics subject to...
SourceID wanfang
proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 766
SubjectTerms Actuators
Adaptive dynamic programming (ADP)
Adaptive systems
Algorithms
Artificial neural networks
Closed loop systems
Communication
constrained inputs
Control systems
Control theory
Discrete time systems
Dynamic programming
Dynamic stability
Dynamical systems
Feedback control
Heuristic algorithms
Iterative methods
Liapunov functions
neural network (NN)
Neural networks
Nonlinear control
Nonlinear dynamical systems
Nonlinear dynamics
Nonlinear systems
Optimal control
Performance indices
Protocol
Protocol (computers)
Protocols
Robustness (mathematics)
Saturation
Schedules
Stability analysis
stochastic communication protocols (SCPs)
suboptimal control
Switching
System identification
Title Neural-Network-Based Control for Discrete-Time Nonlinear Systems with Input Saturation Under Stochastic Communication Protocol
URI https://ieeexplore.ieee.org/document/9358462
https://www.proquest.com/docview/2501318658
https://d.wanfangdata.com.cn/periodical/zdhxb-ywb202104004
Volume 8
WOSCitedRecordID wos000628913100004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2329-9274
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257694
  issn: 2329-9266
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7askH30P1ox9J1Q9C9DKbFseTIeuyyla0PIZAN-mZkWWoCwQ6ps_546N--O9nJEhiFvRkkC8Mn330n3X0H8KGfo1eXTnHVsymXXmpunJBcCy90IpQ0qgjNJtRwmF5e6tEOfFrXwjjnQvKZ-0yP4S6_qOySjsq6dGcnyeDuKqWaWq2N8xRkzqHvIXIEzTU6ntWtZKS7F2djjAXjHiUFICOIt7xQaKuyxTCf3pjSm_Jqw9WcP_-_j3wBBy2lZGfNHngJO658Bc82hAYP4YE0OMyMD5ukb_4FfVfBBk2aOkPeyr5O0X4ggeZUE8KGjYCGWbBW0ZzReS37Uc6XNRuTFmgAlIWuSWxcV3ZiSPCZbdWbsNGiwqFqdgS_zr_9HHznbecFbpHO1Vyk0vQLYWNhrcwj6-KcdPxi6yyGHzZJjY5SZ6MC46GE6kByI7zT2jsh-i714jXslVXp3gCLggKdiIvIayk9Oj8j-kiShU105BPVge4Kicy2suTUHWOWhfAk0hlilxF2WYtdBz6u35g3khyPzD0khNbzWnA6cLICO2v_2esMyWAPLRxSsg6cthvg7-h9MbnNs7ubnJYPlu_432u_hX2a0mT3nMBevVi6d_DE_q6n14v3YdP-AdJd6aU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED5NA8R4GIOB1jGYJXhBwjSNnSZ-3AbTfhFN6pD2ZjmOzSZVydSljPHA386dk5ZWQki8RbJjRfqcu-_su-8A3g0L9OrSpTwd2IxLLxU3TkiuhBcqEak0aRmaTaR5nl1eqvMV-DCvhXHOheQz95Eew11-WdspHZX16c5OksF9kEgZD9pqrYUTFeTOofMhsgTFFbqe2b1kpPoneyOMBuMBpQUgJ4iX_FBorLLEMR_dmcqb6tuCszl8-n-fuQHrHalke-0ueAYrrnoOTxakBjfhF6lwmDHP27Rvvo_eq2QHbaI6Q-bKPl2jBUEKzakqhOWthIaZsE7TnNGJLTuubqYNG5EaaICUhb5JbNTU9sqQ5DNbqjhh55Mah-rxC_h6-Pni4Ih3vRe4RULXcJFJMyyFjYW1soisiwtS8outsxiA2CQzKsqcjUqMiBKqBCmM8E4p74QYusyLl7Ba1ZXbAhYFDToRl5FXUnp0f0YMkSYLm6jIJ2kP-jMktO2Eyak_xliHACVSGrHThJ3usOvB-_kbN60oxz_mbhJC83kdOD3YmYGtu7_2ViMdHKCNQ1LWg7fdBvgz-rO8-lHo-7uClg-2b_vva-_C46OLL2f67Dg_fQVrNL3N9dmB1WYyda_hof3eXN9O3oQN_BscFezs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural-Network-Based+Control+for+Discrete-Time+Nonlinear+Systems+with+Input+Saturation+Under+Stochastic+Communication+Protocol&rft.jtitle=IEEE%2FCAA+journal+of+automatica+sinica&rft.au=Wang%2C+Xueli&rft.au=Ding%2C+Derui&rft.au=Dong%2C+Hongli&rft.au=Zhang%2C+Xian-Ming&rft.date=2021-04-01&rft.issn=2329-9266&rft.eissn=2329-9274&rft.volume=8&rft.issue=4&rft.spage=766&rft.epage=778&rft_id=info:doi/10.1109%2FJAS.2021.1003922&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JAS_2021_1003922
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb-ywb%2Fzdhxb-ywb.jpg