An Improved Population-Based Incremental Learning Algorithm
Population-Based Incremental Learning (PBIL) is a relatively new class of Evolutionary Algorithms (EA) that has been recently applied to a range of optimization problems in engineering with promising results. PBIL combines aspects of Genetic Algorithm with competitive learning. The learning rate in...
Saved in:
| Published in: | International journal of swarm intelligence research Vol. 4; no. 1; pp. 35 - 61 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Hershey
IGI Global
01.01.2013
|
| Subjects: | |
| ISSN: | 1947-9263, 1947-9271 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Population-Based Incremental Learning (PBIL) is a relatively new class of Evolutionary Algorithms (EA) that has been recently applied to a range of optimization problems in engineering with promising results. PBIL combines aspects of Genetic Algorithm with competitive learning. The learning rate in the standard PBIL is generally fixed which makes it difficult for the algorithm to explore the search space effectively. In this paper, a PBIL with adapting learning rate is proposed. The Adaptive PBIL (APBIL) is able to thoroughly explore the search space at the start of the run and maintain the diversity consistently during the run longer than the standard PBIL. The proposed algorithm is validated by applying it to power system controller parameters optimization problem. Simulation results show that the Adaptive PBIL based controller performs better than the standard PBIL based controller, in particular under small disturbance. |
|---|---|
| AbstractList | Population-Based Incremental Learning (PBIL) is a relatively new class of Evolutionary Algorithms (EA) that has been recently applied to a range of optimization problems in engineering with promising results. PBIL combines aspects of Genetic Algorithm with competitive learning. The learning rate in the standard PBIL is generally fixed which makes it difficult for the algorithm to explore the search space effectively. In this paper, a PBIL with adapting learning rate is proposed. The Adaptive PBIL (APBIL) is able to thoroughly explore the search space at the start of the run and maintain the diversity consistently during the run longer than the standard PBIL. The proposed algorithm is validated by applying it to power system controller parameters optimization problem. Simulation results show that the Adaptive PBIL based controller performs better than the standard PBIL based controller, in particular under small disturbance. |
| Author | Folly, Komla A |
| AuthorAffiliation | Department of Electrical Engineering, University of Cape Town, Cape Town, South Africa |
| AuthorAffiliation_xml | – name: Department of Electrical Engineering, University of Cape Town, Cape Town, South Africa |
| Author_xml | – sequence: 1 givenname: Komla surname: Folly middlename: A fullname: Folly, Komla A organization: Department of Electrical Engineering, University of Cape Town, Cape Town, South Africa |
| BookMark | eNp9kc1LwzAYxoMoOOfOXgse9NItH22T4mmOqYOBHvQc3nbpzGiTmnSC_73ZBw6GmhwSwu9587zPe4FOjTUKoSuChwkmYrTy2g0pJgyTsOkJ6pE84XFOOTn9uWfsHA28X-Gw0oTzlPXQ3dhEs6Z19lMtohfbrmvotDXxPfjwMDOlU40yHdTRXIEz2iyjcb20TnfvzSU6q6D2arA_--jtYfo6eYrnz4-zyXgel4xmXcx4RRjkBDDDhYKckqRIecmpoqQUuFKcpjwDASVTGHhopwJBIc9xRlhBCtZHt7u6webHWvlONtqXqq7BKLv2knAuMGYp4QG9PkJXdu1McCdpzjgVQtAkUOmOKp313qlKlrrb9t050LUkWG5SlZtU5SHVoBsd6VqnG3Bf_yhudgq91AcrR5RsF1Ugp7-Q-8nIw2TkdjJ_fZiwb5xwnsM |
| CitedBy_id | crossref_primary_10_1007_s42835_021_00938_8 crossref_primary_10_1007_s11047_016_9544_7 crossref_primary_10_26634_jit_8_2_15514 |
| Cites_doi | 10.1109/CEC.2009.4983011 10.3923/ijepe.2010.45.53 10.1109/IJCNN.2007.4371446 10.1109/59.193836 10.1016/j.neucom.2005.12.116 10.1109/IJCNN.2009.5179080 10.1109/IJCNN.2010.5596522 10.1109/TEVC.2009.2017517 10.1109/ISAP.2009.5352927 10.1109/PES.2006.1709635 10.1016/j.ins.2008.07.005 10.1016/B978-1-55860-377-6.50014-1 10.1109/ICTAI.2005.6 |
| ContentType | Journal Article |
| Copyright | Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. |
| Copyright_xml | – notice: Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited. |
| DBID | AAYXX CITATION 7SC 8FD 8FE 8FG ABJCF AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
| DOI | 10.4018/jsir.2013010102 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition Engineering Collection |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Computer Science Database Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1947-9271 |
| EndPage | 61 |
| ExternalDocumentID | 10_4018_jsir_2013010102 mproved_Population_Based_10_4018_jsir_20130101024 |
| GroupedDBID | 0R~ 4.4 AAOUZ AAYVP ABEPT ABGRR ACOJC ADEKF ALMA_UNASSIGNED_HOLDINGS BYHXH CBWLS CDTDJ CIGCI CKMBR CNQXE COVLG EBS EJD H13 HZ~ JRD MV1 NEEBM O9- RIF AAYXX ABJCF ADMLS AFFHD AFKRA ARAPS BENPR BGLVJ CCPQU CITATION CTSEY HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS 7SC 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L6V L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PUEGO |
| ID | FETCH-LOGICAL-c326t-37f13a91a030bea9214b57c72e21c80fe72576a8ac3e0a7018fa82a990613b1b3 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000219012200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1947-9263 |
| IngestDate | Thu Sep 04 19:19:59 EDT 2025 Sat Aug 23 12:36:27 EDT 2025 Sat Nov 29 06:00:55 EST 2025 Tue Nov 18 21:59:01 EST 2025 Mon Oct 17 10:24:30 EDT 2022 Thu May 09 18:41:41 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c326t-37f13a91a030bea9214b57c72e21c80fe72576a8ac3e0a7018fa82a990613b1b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 2937288824 |
| PQPubID | 2045809 |
| PageCount | 27 |
| ParticipantIDs | proquest_miscellaneous_1778003517 igi_journals_mproved_Population_Based_10_4018_jsir_20130101024 crossref_citationtrail_10_4018_jsir_2013010102 crossref_primary_10_4018_jsir_2013010102 proquest_journals_2937288824 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-01-01T00:00:00 2013-1-1 20130101 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01T00:00:00 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Hershey |
| PublicationPlace_xml | – name: Hershey |
| PublicationTitle | International journal of swarm intelligence research |
| PublicationYear | 2013 |
| Publisher | IGI Global |
| Publisher_xml | – name: IGI Global |
| References | D. E.Goldberg (jsir.2013010102-10) 1989 L.Davis (jsir.2013010102-5) 1996 jsir.2013010102-25 jsir.2013010102-26 jsir.2013010102-20 jsir.2013010102-23 J. F.Kennedy (jsir.2013010102-15) 2001 jsir.2013010102-24 jsir.2013010102-21 jsir.2013010102-22 jsir.2013010102-7 jsir.2013010102-8 C.Conzalez (jsir.2013010102-3) 2001 jsir.2013010102-6 jsir.2013010102-9 jsir.2013010102-16 R.Hemmati (jsir.2013010102-13) 2010; 5 jsir.2013010102-4 jsir.2013010102-1 jsir.2013010102-18 jsir.2013010102-2 jsir.2013010102-19 jsir.2013010102-12 A. A.Abido (jsir.2013010102-0) 2001; 3 jsir.2013010102-11 J. H.Holland (jsir.2013010102-14) 1975 P.Kundur (jsir.2013010102-17) 1994 |
| References_xml | – volume: 3 start-page: 1346 issue: 3 year: 2001 ident: jsir.2013010102-0 article-title: Particle swarm Optimization for multimachine power system stabilizer design. publication-title: IEEE Transactions on Power Systems – ident: jsir.2013010102-23 – year: 1996 ident: jsir.2013010102-5 publication-title: Handbook of genetic algorithms – ident: jsir.2013010102-25 doi: 10.1109/CEC.2009.4983011 – ident: jsir.2013010102-21 doi: 10.3923/ijepe.2010.45.53 – ident: jsir.2013010102-4 – ident: jsir.2013010102-7 doi: 10.1109/IJCNN.2007.4371446 – year: 1989 ident: jsir.2013010102-10 publication-title: Genetic algorithms in search, optimization & machine learning – ident: jsir.2013010102-1 – ident: jsir.2013010102-9 doi: 10.1109/59.193836 – ident: jsir.2013010102-20 doi: 10.1016/j.neucom.2005.12.116 – year: 2001 ident: jsir.2013010102-3 publication-title: The convergence behavior of the PBIL algorithm: A preliminary approach (Tech. Rep.) – ident: jsir.2013010102-11 – ident: jsir.2013010102-8 doi: 10.1109/IJCNN.2009.5179080 – ident: jsir.2013010102-22 doi: 10.1109/IJCNN.2010.5596522 – year: 1975 ident: jsir.2013010102-14 publication-title: Adaptation in nature and artificial systems – ident: jsir.2013010102-26 doi: 10.1109/TEVC.2009.2017517 – ident: jsir.2013010102-18 doi: 10.1109/ISAP.2009.5352927 – ident: jsir.2013010102-6 doi: 10.1109/PES.2006.1709635 – ident: jsir.2013010102-24 doi: 10.1016/j.ins.2008.07.005 – ident: jsir.2013010102-2 doi: 10.1016/B978-1-55860-377-6.50014-1 – ident: jsir.2013010102-12 – year: 2001 ident: jsir.2013010102-15 publication-title: Swarm intelligence – ident: jsir.2013010102-16 – year: 1994 ident: jsir.2013010102-17 publication-title: Power system stability and control – ident: jsir.2013010102-19 doi: 10.1109/ICTAI.2005.6 – volume: 5 start-page: 2564 issue: 17 year: 2010 ident: jsir.2013010102-13 article-title: Comparison of robust and intelligent based power system stabilizers. publication-title: International Journal of the Pysical Science |
| SSID | ssj0000547753 |
| Score | 1.8565211 |
| Snippet | Population-Based Incremental Learning (PBIL) is a relatively new class of Evolutionary Algorithms (EA) that has been recently applied to a range of... |
| SourceID | proquest crossref igi |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 35 |
| SubjectTerms | Algorithms Controllers Disturbances Evolutionary algorithms Genetic algorithms Learning Machine learning Optimization Searching Swarm intelligence |
| Title | An Improved Population-Based Incremental Learning Algorithm |
| URI | http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jsir.2013010102 https://www.proquest.com/docview/2937288824 https://www.proquest.com/docview/1778003517 |
| Volume | 4 |
| WOSCitedRecordID | wos000219012200002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1947-9271 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0000547753 issn: 1947-9263 databaseCode: K7- dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1947-9271 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0000547753 issn: 1947-9263 databaseCode: M7S dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1947-9271 dateEnd: 20211231 omitProxy: false ssIdentifier: ssj0000547753 issn: 1947-9263 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH849eDF-YnVOSp48BJt0nZpEZQpiqCM4RfeQtKmc6LdtNO_35c221DRi-ekSXkv7zPh9wPYVQGe2ixuEV_FIQlaShOcqUmUZhyzA-WlJXzx_RXvdKKHh7hrG26FfVY59omlo04HiemRH2BY4gzLNRYcD1-JYY0yt6uWQqMGcwYlgZZP924mPRZMR3gFRImlOicxa_kVug8WFdHBU9E3gKDoxKkBVvsSmGr9Xv-Hdy5Dznn9vz-7BIs22XTb1elYhhmdr0B9TOTgWrtehcN27lbdBZ263QmlFznBEJe66EKqJiIuZeFYe277uYcbjh5f1uDu_Oz29IJYVgWSYKo2Qo-SUV_GVKJ5Ky1jRgMV8oQzzWgSeZnmpgaRkUx87UmOkspkxCRGLYz8iip_HWbzQa43wA096aehlExHMqDMk14oNaZ8fprEXGnlwP5YpCKxkOOG-eJZYOlhdCCMDsRUBw7sTT4YVmgbv091UUfCWlzxfVgM08yBoy9TrBzFVI6ilONvWwQONMbqna4y1a0DO5NhNEpz0yJzPXgvBOU8Ku9o-ebfS2zBAiv5NUxPpwGzo7d3vQ3zyceoX7w1Ye7krNO9bkLtkpNmebY_AYHA_XQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9swFD4qbNJ4GZcNkY0xT2LSXjxiJ6kdITZ1G6ioXcUDm3gzduKUIkg7Ujbxp_iNO86lFZvYGw97tnMi-3w-NyffAdg2IaI2i9s0MHFEw7axFGdaKtNMYHRg_LSkL_7eF4OBPDmJj1pw2_wL4z6rbGxiaajTceJq5DvolgTHdI2HHyc_qOsa5W5XmxYaFSx69uYXpmzF3uEX1O9bzg_2jz93ad1VgCYYqkzxRGUs0DHTCG9jdcxZaCKRCG45S6SfWeFicC11ElhfC5_JTEuu0Wqj5zPMBCh3AR6FgRTuXPUEndV0MPwRFfEli0NBY94OKjYhTGLkznkxcgSk6DSYI3K74wgXRsPRX96gdHEHy__b5qzA0zqYJp0K_avQsvkaLDeNKkhtt57BbicnVfXEpuRo1rKMfkIXnhI0kVWRFEXVdLND0rkY4gKnZ5fP4duDLGEdFvNxbjeARL4O0khrbqUOGfe1H2mLIW2QJrEw1njwvlGhSmpKddfZ40JhauV0rpzO1VznHrybPTCp2ETun0oQE6q2KMWfw2qSZh58uDOl3kc130dV7uN9rwg92GzgNJcyx5IHb2bDaHTcTZLO7fi6UEwIWd5Bixf_FvEannSPv_ZV_3DQewlLvOwl4upXm7A4vbq2r-Bx8nM6Kq62ypNE4PSh0fkbN_9V9A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Population-Based+Incremental+Learning+Algorithm&rft.jtitle=International+journal+of+swarm+intelligence+research&rft.au=Folly%2C+Komla+A.&rft.date=2013-01-01&rft.issn=1947-9263&rft.eissn=1947-9271&rft.volume=4&rft.issue=1&rft.spage=35&rft.epage=61&rft_id=info:doi/10.4018%2Fjsir.2013010102&rft.externalDBID=n%2Fa&rft.externalDocID=10_4018_jsir_2013010102 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1947-9263&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1947-9263&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1947-9263&client=summon |