Numerical factorization of multivariate complex polynomials

One can consider the problem of factoring multivariate complex polynomials as a special case of the decomposition of a pure dimensional solution set of a polynomial system into irreducible components. The importance and nature of this problem however justify a special treatment. We exploit the reduc...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical computer science Vol. 315; no. 2; pp. 651 - 669
Main Authors: Sommese, Andrew J., Verschelde, Jan, Wampler, Charles W.
Format: Journal Article
Language:English
Published: Elsevier B.V 06.05.2004
Subjects:
ISSN:0304-3975, 1879-2294
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:One can consider the problem of factoring multivariate complex polynomials as a special case of the decomposition of a pure dimensional solution set of a polynomial system into irreducible components. The importance and nature of this problem however justify a special treatment. We exploit the reduction to the univariate root finding problem as a way to sample the polynomial more efficiently, certify the decomposition with linear traces, and apply interpolation techniques to construct the irreducible factors. With a random combination of differentials we lower multiplicities and reduce to the regular case. Estimates on the location of the zeroes of the derivative of polynomials provide bounds on the required precision. We apply our software to study the singularities of Stewart–Gough platforms.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2004.01.011