Numerical factorization of multivariate complex polynomials
One can consider the problem of factoring multivariate complex polynomials as a special case of the decomposition of a pure dimensional solution set of a polynomial system into irreducible components. The importance and nature of this problem however justify a special treatment. We exploit the reduc...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 315; číslo 2; s. 651 - 669 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
06.05.2004
|
| Témata: | |
| ISSN: | 0304-3975, 1879-2294 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | One can consider the problem of factoring multivariate complex polynomials as a special case of the decomposition of a pure dimensional solution set of a polynomial system into irreducible components. The importance and nature of this problem however justify a special treatment. We exploit the reduction to the univariate root finding problem as a way to sample the polynomial more efficiently, certify the decomposition with linear traces, and apply interpolation techniques to construct the irreducible factors. With a random combination of differentials we lower multiplicities and reduce to the regular case. Estimates on the location of the zeroes of the derivative of polynomials provide bounds on the required precision. We apply our software to study the singularities of Stewart–Gough platforms. |
|---|---|
| Bibliografie: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| ISSN: | 0304-3975 1879-2294 |
| DOI: | 10.1016/j.tcs.2004.01.011 |