Numerical factorization of multivariate complex polynomials

One can consider the problem of factoring multivariate complex polynomials as a special case of the decomposition of a pure dimensional solution set of a polynomial system into irreducible components. The importance and nature of this problem however justify a special treatment. We exploit the reduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science Jg. 315; H. 2; S. 651 - 669
Hauptverfasser: Sommese, Andrew J., Verschelde, Jan, Wampler, Charles W.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 06.05.2004
Schlagworte:
ISSN:0304-3975, 1879-2294
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One can consider the problem of factoring multivariate complex polynomials as a special case of the decomposition of a pure dimensional solution set of a polynomial system into irreducible components. The importance and nature of this problem however justify a special treatment. We exploit the reduction to the univariate root finding problem as a way to sample the polynomial more efficiently, certify the decomposition with linear traces, and apply interpolation techniques to construct the irreducible factors. With a random combination of differentials we lower multiplicities and reduce to the regular case. Estimates on the location of the zeroes of the derivative of polynomials provide bounds on the required precision. We apply our software to study the singularities of Stewart–Gough platforms.
Bibliographie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2004.01.011