A prediction‐based optimization strategy to balance the use of diesel generator and emergency battery in the microgrid
Summary This paper presents a prediction‐based optimization strategy (POS) for the Energy Management System to balance the use of diesel generator (DG) and emergency battery (EB) in the microgrid. The POS is developed by combing two operating strategies, the “predictive analysis” and “optimal operat...
Saved in:
| Published in: | International journal of energy research Vol. 44; no. 7; pp. 5425 - 5440 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Chichester, UK
John Wiley & Sons, Inc
10.06.2020
|
| Subjects: | |
| ISSN: | 0363-907X, 1099-114X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Summary
This paper presents a prediction‐based optimization strategy (POS) for the Energy Management System to balance the use of diesel generator (DG) and emergency battery (EB) in the microgrid. The POS is developed by combing two operating strategies, the “predictive analysis” and “optimal operation” in each scheduling period for the microgrid. Based on the predicted microgrid state and energy demand, a multi‐objective mixed‐integer nonlinear programming model (MOMINP) is constructed to minimize the fuel consumption and the regularization of battery charge/discharge subject to the practical constraints in the microgrid. This paper proposes a detailed scheme to deal with the multiple objectives and nonlinear constraints in the MOMINP, then the MOMINP is successfully converted into a mixed‐integer linear programming model (MILP). And an adjustment strategy is designed to obtain the near‐optimal solution of the MOMINP based on the optimal solution of the MILP solved by using the CPLEX Optimizer. Experimental results show that in a basic scheduling period, the working time of DG in the POS‐softmax regression strategy is shorter than the current operation, and the fuel consumption reduction ratio is about 15.3% with the same battery SoC value at the end of the scheduling. At the same time, the fuel consumption in the POS‐accurate prediction strategy can be reduced by up to 54.9% compared with the POS‐softmax regression strategy and can be reduced by 61.8% compared to the current operation. Based on the comparative analysis of the actual case data of a micro‐grid in 6 months, it can be seen that on average the POS works better than the current operation, with an approximately 23.6% decrease in the objective function and an additional 16.2% decrease with an accurate prediction. |
|---|---|
| AbstractList | This paper presents a prediction‐based optimization strategy (POS) for the Energy Management System to balance the use of diesel generator (DG) and emergency battery (EB) in the microgrid. The POS is developed by combing two operating strategies, the “predictive analysis” and “optimal operation” in each scheduling period for the microgrid. Based on the predicted microgrid state and energy demand, a multi‐objective mixed‐integer nonlinear programming model (MOMINP) is constructed to minimize the fuel consumption and the regularization of battery charge/discharge subject to the practical constraints in the microgrid. This paper proposes a detailed scheme to deal with the multiple objectives and nonlinear constraints in the MOMINP, then the MOMINP is successfully converted into a mixed‐integer linear programming model (MILP). And an adjustment strategy is designed to obtain the near‐optimal solution of the MOMINP based on the optimal solution of the MILP solved by using the CPLEX Optimizer. Experimental results show that in a basic scheduling period, the working time of DG in the POS‐softmax regression strategy is shorter than the current operation, and the fuel consumption reduction ratio is about 15.3% with the same battery SoC value at the end of the scheduling. At the same time, the fuel consumption in the POS‐accurate prediction strategy can be reduced by up to 54.9% compared with the POS‐softmax regression strategy and can be reduced by 61.8% compared to the current operation. Based on the comparative analysis of the actual case data of a micro‐grid in 6 months, it can be seen that on average the POS works better than the current operation, with an approximately 23.6% decrease in the objective function and an additional 16.2% decrease with an accurate prediction. Summary This paper presents a prediction‐based optimization strategy (POS) for the Energy Management System to balance the use of diesel generator (DG) and emergency battery (EB) in the microgrid. The POS is developed by combing two operating strategies, the “predictive analysis” and “optimal operation” in each scheduling period for the microgrid. Based on the predicted microgrid state and energy demand, a multi‐objective mixed‐integer nonlinear programming model (MOMINP) is constructed to minimize the fuel consumption and the regularization of battery charge/discharge subject to the practical constraints in the microgrid. This paper proposes a detailed scheme to deal with the multiple objectives and nonlinear constraints in the MOMINP, then the MOMINP is successfully converted into a mixed‐integer linear programming model (MILP). And an adjustment strategy is designed to obtain the near‐optimal solution of the MOMINP based on the optimal solution of the MILP solved by using the CPLEX Optimizer. Experimental results show that in a basic scheduling period, the working time of DG in the POS‐softmax regression strategy is shorter than the current operation, and the fuel consumption reduction ratio is about 15.3% with the same battery SoC value at the end of the scheduling. At the same time, the fuel consumption in the POS‐accurate prediction strategy can be reduced by up to 54.9% compared with the POS‐softmax regression strategy and can be reduced by 61.8% compared to the current operation. Based on the comparative analysis of the actual case data of a micro‐grid in 6 months, it can be seen that on average the POS works better than the current operation, with an approximately 23.6% decrease in the objective function and an additional 16.2% decrease with an accurate prediction. |
| Author | Yu, Hua Dong, Jichang Zhang, Huihui Liu, Zhonghua |
| Author_xml | – sequence: 1 givenname: Zhonghua orcidid: 0000-0001-9689-7753 surname: Liu fullname: Liu, Zhonghua email: liuzhonghua09@mails.ucas.ac.cn organization: Beijing University of Chemical Technology – sequence: 2 givenname: Huihui surname: Zhang fullname: Zhang, Huihui organization: China Electric Power Research Institute – sequence: 3 givenname: Jichang surname: Dong fullname: Dong, Jichang organization: University of the Chinese Academy of Sciences – sequence: 4 givenname: Hua surname: Yu fullname: Yu, Hua organization: University of the Chinese Academy of Sciences |
| BookMark | eNp1kM1KAzEUhYMo2FbxFQIuXMjUTDK_y1LqDxQEUehuyGRuaspMUpMUHVc-gs_ok5i2rkRXF879zr2HM0SH2mhA6Cwm45gQegV2nNKSHqBBTMoyiuNkcYgGhGUsKkm-OEZD51aEhF2cD9DbBK8tNEp4ZfTXx2fNHTTYrL3q1Dvfith5yz0se-wNrnnLtQDsnwFvHGAjcaPAQYuXoCFwxmKuGwwd2KCIPji8B9tjpXemTglrllY1J-hI8tbB6c8coafr2eP0Nprf39xNJ_NIMJrRKCl5Vhd1LjlQyjgTIXUhU0kEAc6TTBY1K2kqGYekYA2ntUgKSEktgy8FwkbofH93bc3LBpyvVmZjdXhZ0YQkKc2SnAXqYk-FdM5ZkNXaqo7bvopJta21Alttaw1k9IsUyu-KCjWp9g_-cs-_qhb6_85Ws4cd_Q1f9Yyr |
| CitedBy_id | crossref_primary_10_1002_2050_7038_12788 crossref_primary_10_1002_er_5904 crossref_primary_10_1002_er_7707 crossref_primary_10_1093_ijlct_ctac080 crossref_primary_10_1016_j_seta_2022_102921 crossref_primary_10_1155_2023_3173099 crossref_primary_10_1007_s42835_023_01554_4 crossref_primary_10_1002_er_6286 crossref_primary_10_3390_en16093698 crossref_primary_10_1002_2050_7038_13232 crossref_primary_10_1049_rpg2_13056 crossref_primary_10_1002_er_6505 crossref_primary_10_1002_er_7758 crossref_primary_10_1002_er_8502 crossref_primary_10_1002_er_7433 |
| Cites_doi | 10.1186/s13705-016-0071-2 10.1049/iet-gtd.2017.0354 10.1016/j.enconman.2014.10.067 10.1016/j.epsr.2014.12.019 10.1016/j.scs.2017.04.006 10.1109/TSG.2016.2580575 10.1109/TIE.2017.2674581 10.1002/er.4062 10.1016/j.rser.2018.03.002 10.1016/j.apenergy.2018.04.103 10.1016/j.energy.2016.11.018 10.1016/j.apenergy.2016.10.059 10.1016/j.apenergy.2017.12.019 10.1016/j.apenergy.2016.02.075 10.1109/TPEL.2016.2581021 10.1016/j.rser.2016.10.034 10.1016/j.ijepes.2018.09.041 10.1109/ICDCM.2017.8001066 10.3390/en7042027 10.1109/IECON.2016.7793965 10.1109/JIOT.2018.2805899 10.1002/er.4512 10.1109/TSTE.2017.2692754 10.1016/j.compeleceng.2018.01.023 10.1016/j.compchemeng.2016.08.007 10.1016/j.rser.2016.03.003 10.1016/j.renene.2017.07.005 10.1109/TII.2016.2578184 10.1016/j.energy.2016.08.048 10.1109/JESTPE.2018.2882509 10.1109/TIE.2017.2650872 10.1109/TCE.2017.015014 10.1109/TSG.2016.2555245 10.1002/er.3536 |
| ContentType | Journal Article |
| Copyright | 2020 John Wiley & Sons Ltd 2020 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2020 John Wiley & Sons Ltd – notice: 2020 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
| DOI | 10.1002/er.5292 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Oceanic Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Environment Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Environmental Sciences and Pollution Management Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-114X |
| EndPage | 5440 |
| ExternalDocumentID | 10_1002_er_5292 ER5292 |
| Genre | article |
| GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFRAH AFZJQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM F00 G-S G.N GNP GODZA H.T H.X HHY HZ~ H~9 IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WWI WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX ADMLS CITATION EBS O8X WXSBR 7SP 7ST 7TB 7TN 8FD C1K F1W F28 FR3 H96 KR7 L.G L7M SOI |
| ID | FETCH-LOGICAL-c3262-49a6b8b7fae223a3c9178f5f0c0eaa46f8b3925f3ae483da2bc48e50bfa6b5e03 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000537950000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0363-907X |
| IngestDate | Wed Aug 13 09:27:46 EDT 2025 Sat Nov 29 02:58:45 EST 2025 Tue Nov 18 22:39:12 EST 2025 Wed Jan 22 16:34:46 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3262-49a6b8b7fae223a3c9178f5f0c0eaa46f8b3925f3ae483da2bc48e50bfa6b5e03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9689-7753 |
| PQID | 2404526473 |
| PQPubID | 996365 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2404526473 crossref_primary_10_1002_er_5292 crossref_citationtrail_10_1002_er_5292 wiley_primary_10_1002_er_5292_ER5292 |
| PublicationCentury | 2000 |
| PublicationDate | 10 June 2020 |
| PublicationDateYYYYMMDD | 2020-06-10 |
| PublicationDate_xml | – month: 06 year: 2020 text: 10 June 2020 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Bognor Regis |
| PublicationTitle | International journal of energy research |
| PublicationYear | 2020 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2017; 64 2017; 63 2017; 8 2017; 1 2015; 122 2018; 222 2019; 12 2015; 11 2016; 167 2016; 95 2017; 194 2019; 106 2018; 89 2017; 113 2018; 42 2016; 12 2016; 11 2017; 72 2018; 9 2016; 6 2018; 5 2017; 14 2019; 44 2019; 43 2016; 118 2018; 211 2017; 32 2018; 70 2018 2017 2016 2016; 60 2015 2015; 90 2016; 114 2018; 12 2014; 7 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_43_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Manbachi M (e_1_2_7_24_1) 2017; 1 Hossein S (e_1_2_7_12_1) 2019; 12 Ahmed N (e_1_2_7_13_1) 2019; 43 Wang T (e_1_2_7_34_1) 2017; 14 Jansen LL (e_1_2_7_4_1) 2019; 44 Marzband M (e_1_2_7_26_1) 2015; 11 e_1_2_7_30_1 Rafique SF (e_1_2_7_10_1) 2018; 12 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
| References_xml | – volume: 95 start-page: 21 year: 2016 end-page: 37 article-title: Optimal integrated energy systems design incorporating variable renewable energy sources publication-title: Computers Chem Eng – volume: 9 start-page: 530 issue: 2 year: 2018 end-page: 543 article-title: Fuzzy logic‐based energy management system design for residential grid‐connected microgrids publication-title: IEEE Trans Smart Grid – volume: 72 start-page: 1208 year: 2017 end-page: 1232 article-title: A survey on behind the meter energy management systems in smart grid publication-title: Renew Sustain Energy Rev – volume: 113 start-page: 1462 year: 2017 end-page: 1471 article-title: Stochastic, adaptive, and dynamic control of energy storage systems integrated with renewable energy sources for power loss minimization publication-title: Renew Energy – volume: 43 start-page: 4127 year: 2019 end-page: 4147 article-title: Design and analysis of an aging‐aware energy management system for islanded grids using mixed‐integer quadratic programming publication-title: Int J Energy Res – volume: 106 start-page: 124 year: 2019 end-page: 137 article-title: MPC‐based approach for online demand side and storage system management in market based wind integrated power systems publication-title: Int J Electr Power Energy Syst – volume: 6 start-page: 5 issue: 1 year: 2016 article-title: RBF neural network‐based online intelligent management of a battery energy storage system for stand‐alone microgrids publication-title: Energy Sustain Soc – volume: 32 start-page: 338 year: 2017 end-page: 347 article-title: Scheduling deferrable appliances and energy resources of a smart home applying multi‐time scale stochastic model predictive control publication-title: Sustain Cities Soc – volume: 63 start-page: 426 issue: 4 year: 2017 end-page: 434 article-title: A smart home energy management system using IoT and big data analytics approach publication-title: IEEE Trans Consumer Electron – volume: 12 start-page: 1 issue: 11 year: 2019 end-page: 26 article-title: A survey on microgrid energy management considering flexible energy sources publication-title: Energies – volume: 8 start-page: 1507 issue: 4 year: 2017 end-page: 1517 article-title: A sustainable energy management system for isolated microgrids publication-title: IEEE Trans Sustain Energy – volume: 122 start-page: 19 year: 2015 end-page: 28 article-title: A mixed integer linear programming model for the energy management problem of microgrids publication-title: Electr Pow Syst Res – volume: 12 start-page: 1930 issue: 5 year: 2016 end-page: 1942 article-title: Energy management for joint operation of CHP and PV prosumers inside a grid‐connected microgrid: a game theoretic approach publication-title: IEEE Trans Ind Inform – volume: 5 start-page: 1055 issue: 2 year: 2018 end-page: 1069 article-title: A fog‐based internet of energy architecture for transactive energy management systems publication-title: IEEE Internet Things J – volume: 44 start-page: 1 year: 2019 end-page: 30 article-title: Smart grid lab research in Europe and beyond publication-title: Int J Energy Res – volume: 64 start-page: 5468 issue: 7 year: 2017 end-page: 5478 article-title: Adaptive dynamic programming‐based optimal control scheme for energy storage systems publication-title: IEEE Trans Ind Electron – volume: 32 start-page: 2769 issue: 4 year: 2017 end-page: 2783 article-title: Mixed‐integer‐linear‐programming‐based energy management system for hybrid PV‐wind‐battery microgrids: modeling, design, and experimental verification publication-title: IEEE Trans Power Electron – volume: 70 start-page: 179 year: 2018 end-page: 198 article-title: Multi‐objective optimization and energy management in renewable based AC/DC microgrid publication-title: Computers Electr Eng – volume: 90 start-page: 21 year: 2015 end-page: 33 article-title: A local energy management of a hybrid PV ‐storage based distributed generation for microgrids publication-title: Energy Convers Manag – year: 2016 – volume: 11 start-page: 1518 issue: 40 year: 2016 end-page: 1531 article-title: A comprehensive stochastic energy management system in reconfigurable microgrids publication-title: Int J Energy Res – volume: 194 start-page: 569 year: 2017 end-page: 577 article-title: Charging optimization in lithium‐ion batteries based on temperature rise and charge time publication-title: Appl Energy – volume: 114 start-page: 742 year: 2016 end-page: 752 article-title: An advanced real time energy management system for microgrids publication-title: Energy – start-page: 1 year: 2018 end-page: 1 article-title: Novel predictive fuzzy logic‐based energy management system for grid‐connected and off‐grid operation of residential smart micro‐grids publication-title: IEEE J Emerg Sel Topics Power Electron – volume: 7 start-page: 2027 year: 2014 end-page: 2050 article-title: Stochastic modeling and optimization in a microgrid: a survey publication-title: Energies – volume: 14 start-page: 1 year: 2017 end-page: 13 article-title: Neural networks for power management optimal strategy in hybrid microgrid neural networks for power management optimal strategy in hybrid microgrid publication-title: Neural Comput Appl – volume: 11 start-page: 1 issue: 3 year: 2015 end-page: 11 article-title: An optimal energy management system for islanded microgrids based on multiperiod artificial bee Colony combined with Markov chain publication-title: IEEE Syst J – volume: 9 start-page: 1161 issue: 2 year: 2018 end-page: 1174 article-title: Towards optimal energy management of microgrids via robust two‐stage optimization publication-title: IEEE Trans Smart Grid – volume: 167 start-page: 155 year: 2016 end-page: 157 article-title: Integrated energy systems publication-title: Appl Energy – volume: 42 start-page: 2741 year: 2018 end-page: 2756 article-title: A new ship energy management algorithm to the smart electricity grid system publication-title: Int J Energy Res – volume: 118 start-page: 1322 year: 2016 end-page: 1333 article-title: Mix‐mode energy management strategy and battery sizing for economic operation of grid‐tied microgrid publication-title: Energy – volume: 60 start-page: 1263 year: 2016 end-page: 1273 article-title: Microgrid supervisory controllers and energy management systems: a literature review publication-title: Renew Sustain Energy Rev – volume: 222 start-page: 1033 year: 2018 end-page: 1055 article-title: Microgrids energy management systems: a critical review on methods, solutions, and prospects publication-title: Appl Energy – year: 2017 – volume: 64 start-page: 4110 issue: 5 year: 2017 end-page: 4120 article-title: Mixed iterative adaptive dynamic programming for optimal battery energy control in smart residential microgrids publication-title: IEEE Trans Ind Electron – volume: 1 start-page: 293 issue: 10 year: 2017 end-page: 304 article-title: AMI‐based energy management for islanded AC/DC microgrids utilizing energy conservation and optimization publication-title: IEEE Trans Smart Grid – volume: 211 start-page: 1229 year: 2018 end-page: 1244 article-title: The role of renewable energy consumption and commercial services trade in carbon dioxide reduction: evidence from 25 developing countries publication-title: Appl Energy – year: 2015 – volume: 12 start-page: 519 issue: 3 year: 2018 end-page: 530 article-title: Energy management system, generation and demand predictors: a review publication-title: Iet Gener Transm Distrib – volume: 89 start-page: 292 year: 2018 end-page: 308 article-title: The lithium‐ion battery: state of the art and future perspectives publication-title: Renew Sustain Energy Rev – volume: 43 start-page: 6721 year: 2019 end-page: 6739 article-title: Modeling and operation optimization of RE integrated microgrids considering economic, energy, and environmental aspects publication-title: Int J Energy Res – ident: e_1_2_7_35_1 doi: 10.1186/s13705-016-0071-2 – volume: 12 start-page: 519 issue: 3 year: 2018 ident: e_1_2_7_10_1 article-title: Energy management system, generation and demand predictors: a review publication-title: Iet Gener Transm Distrib doi: 10.1049/iet-gtd.2017.0354 – ident: e_1_2_7_15_1 doi: 10.1016/j.enconman.2014.10.067 – ident: e_1_2_7_16_1 doi: 10.1016/j.epsr.2014.12.019 – volume: 1 start-page: 293 issue: 10 year: 2017 ident: e_1_2_7_24_1 article-title: AMI‐based energy management for islanded AC/DC microgrids utilizing energy conservation and optimization publication-title: IEEE Trans Smart Grid – ident: e_1_2_7_37_1 doi: 10.1016/j.scs.2017.04.006 – ident: e_1_2_7_39_1 doi: 10.1109/TSG.2016.2580575 – volume: 43 start-page: 6721 year: 2019 ident: e_1_2_7_13_1 article-title: Modeling and operation optimization of RE integrated microgrids considering economic, energy, and environmental aspects publication-title: Int J Energy Res – ident: e_1_2_7_19_1 doi: 10.1109/TIE.2017.2674581 – volume: 11 start-page: 1 issue: 3 year: 2015 ident: e_1_2_7_26_1 article-title: An optimal energy management system for islanded microgrids based on multiperiod artificial bee Colony combined with Markov chain publication-title: IEEE Syst J – ident: e_1_2_7_29_1 doi: 10.1002/er.4062 – ident: e_1_2_7_44_1 doi: 10.1016/j.rser.2018.03.002 – ident: e_1_2_7_6_1 doi: 10.1016/j.apenergy.2018.04.103 – ident: e_1_2_7_14_1 doi: 10.1016/j.energy.2016.11.018 – ident: e_1_2_7_33_1 – ident: e_1_2_7_43_1 doi: 10.1016/j.apenergy.2016.10.059 – ident: e_1_2_7_11_1 doi: 10.1016/j.apenergy.2017.12.019 – ident: e_1_2_7_2_1 doi: 10.1016/j.apenergy.2016.02.075 – ident: e_1_2_7_17_1 doi: 10.1109/TPEL.2016.2581021 – ident: e_1_2_7_7_1 doi: 10.1016/j.rser.2016.10.034 – ident: e_1_2_7_41_1 doi: 10.1016/j.ijepes.2018.09.041 – volume: 12 start-page: 1 issue: 11 year: 2019 ident: e_1_2_7_12_1 article-title: A survey on microgrid energy management considering flexible energy sources publication-title: Energies – ident: e_1_2_7_28_1 doi: 10.1109/ICDCM.2017.8001066 – ident: e_1_2_7_36_1 doi: 10.3390/en7042027 – ident: e_1_2_7_30_1 doi: 10.1109/IECON.2016.7793965 – ident: e_1_2_7_9_1 doi: 10.1109/JIOT.2018.2805899 – ident: e_1_2_7_21_1 doi: 10.1002/er.4512 – ident: e_1_2_7_27_1 – ident: e_1_2_7_40_1 doi: 10.1109/TSTE.2017.2692754 – ident: e_1_2_7_25_1 doi: 10.1016/j.compeleceng.2018.01.023 – volume: 44 start-page: 1 year: 2019 ident: e_1_2_7_4_1 article-title: Smart grid lab research in Europe and beyond publication-title: Int J Energy Res – volume: 14 start-page: 1 year: 2017 ident: e_1_2_7_34_1 article-title: Neural networks for power management optimal strategy in hybrid microgrid neural networks for power management optimal strategy in hybrid microgrid publication-title: Neural Comput Appl – ident: e_1_2_7_3_1 doi: 10.1016/j.compchemeng.2016.08.007 – ident: e_1_2_7_5_1 doi: 10.1016/j.rser.2016.03.003 – ident: e_1_2_7_18_1 – ident: e_1_2_7_38_1 doi: 10.1016/j.renene.2017.07.005 – ident: e_1_2_7_42_1 doi: 10.1109/TII.2016.2578184 – ident: e_1_2_7_22_1 doi: 10.1016/j.energy.2016.08.048 – ident: e_1_2_7_32_1 doi: 10.1109/JESTPE.2018.2882509 – ident: e_1_2_7_20_1 doi: 10.1109/TIE.2017.2650872 – ident: e_1_2_7_8_1 doi: 10.1109/TCE.2017.015014 – ident: e_1_2_7_31_1 doi: 10.1109/TSG.2016.2555245 – ident: e_1_2_7_23_1 doi: 10.1002/er.3536 |
| SSID | ssj0009917 |
| Score | 2.358679 |
| Snippet | Summary
This paper presents a prediction‐based optimization strategy (POS) for the Energy Management System to balance the use of diesel generator (DG) and... This paper presents a prediction‐based optimization strategy (POS) for the Energy Management System to balance the use of diesel generator (DG) and emergency... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5425 |
| SubjectTerms | Comparative analysis Diesel Diesel fuels Diesel generators Distributed generation Emergencies Energy demand Energy management Fuel consumption Integer programming Integers Linear programming microgrid mixed‐integer linear programming multi‐objective mixed‐integer nonlinear programming Nonlinear programming Objective function optimal operation Optimization Predictions Regression analysis Regularization Scheduling Strategy |
| Title | A prediction‐based optimization strategy to balance the use of diesel generator and emergency battery in the microgrid |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fer.5292 https://www.proquest.com/docview/2404526473 |
| Volume | 44 |
| WOSCitedRecordID | wos000537950000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1099-114X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009917 issn: 0363-907X databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF2k9aAHv8VqlT0Ub7Frstskx6ItHqRIsdBb2N1MSqEmJWnF3vwJ_kZ_iTtJ-iEiCJ5y2YFlZ2fnTXbnPUIaOYb1ObOUy0OLhy5YStnaQm4rW4TSE1CITbi9njcc-k8bUl8FP8TqhxtGRn5eY4BLlTXXpKGQ3gjbN6dv1Ta7lldI9b7fHTyuGXf9XG43v6g0FeCw6JhF42Zp-j0VrfHlJkrN00x3_x8TPCB7Jbak7WIzHJItiI_I7gbj4DF5a9Npincz6I_P9w9MYiFNzLnxUjZk0qzgq13QWUIVPnzUQA1KpPMMaBJRfHUIEzrK6apNwU5lHFJYNnEaC2wPWtBxnBu94Hu_UToOT8ig23m-e7BK8QVLG0RnW9yXLeUpN5JgEIR0tFlOLxIR0wyk5K3IUwZaiciRwD0nlLbS3APBVGTsBDDnlFTiJIYzQgXCKOWzqMU0d5mSCmnCWsp3b30FjqiR66UfAl0yk6NAxiQoOJXtANIAl7JG6GrgtCDj-DmkvnRkUEZjFhjUgkrq3HVqpJG77DfzoNPHz_nfhl2QHRvLb5QyYnVSmaVzuCTb-nU2ztKrckN-Aamk5ms |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kCurBt1ifeyjeomuy2yRH0RbFWkQUegu7m0kpaCppFb35E_yN_hJ3kvQhIgiecpmBsDO7883uzDcAtRzDhoI72hexI2IfHa1d4xC3lStjFUgshk347XbQ6YQ3ZVUl9cIU_BDjCzfaGfl5TRucLqSPJ6yhmB1JN7TH76ywTiQrMHt-27xvTSh3w3zebv5SaVPATtEyS8rHper3WDQBmNMwNY8zzeX__OEKLJXokp0W7rAKM5iuweIU5-A6vJ6yp4xeZ8gin-8fFMZi1rcnx2PZkskGBWPtGxv2mabSR4PM4kT2PEDWTxjVHeID6-aE1TZlZyqNGY7aOK0GNQi9sV6aKz1SxV8368UbcN9s3J1dOOX4BcdYTOc6IlR1HWg_UWgxhPKMXc8gkQk3HJUS9STQFlzJxFMoAi9WrjYiQMl1YvUkcm8TKmk_xS1gkoCUDnlS50b4XCtNRGF1HfonoUZPVuFwZIjIlNzkNCLjISpYld0Is4iWsgpsLPhU0HH8FNkdWTIq9-MgsriFZqkL36tCLbfZb-pR45Y-238TO4D5i7vrVtS6bF_twIJLyTgNNuK7UBlmz7gHc-Zl2Btk-6V3fgFvsepb |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSgMxEA6iInrwX6y_OYi31bib7G6OohbFUkQUeluS7EQK7bZsW9Gbj-Az-iRmdretIoLgaS8zEDKZmS-bmW8IOSowrOTM0xFPPZ5G4GntGw-5rXyRqlhAOWwiajbjVkveVVWV2AtT8kNMfrihZxTxGh0c-qk9nbKGQn4ifOnC7xwXMnROOXd5X39sTCl3ZTFvt3ipdFfAVtkyi8qnler3XDQFmF9hapFn6iv_WeEqWa7QJT0vj8MamYFsnSx94RzcIC_ntJ_j6wxa5OPtHdNYSnsucnSrlkw6KBlrX-mwRzWWPhqgDifS0QBoz1KsO4QOfSoIq92VnaospTBu43Qa2CD0SttZodTFir-nvJ1uksf61cPFtVeNX_CMw3S-x6UKdawjq8BhCBUYt5-xFZYZBkrx0MbagSthAwU8DlLla8NjEExbpyeABVtkNutlsE2oQCClJbMhMzxiWmkkCgu1jM6khkDUyPHYEImpuMlxREYnKVmV_QTyBLeyRuhEsF_ScfwU2RtbMqn8cZA43IKz1HkU1MhRYbPf1JOre_zs_E3skCzcXdaTxk3zdpcs-ngXx7lGbI_MDvMR7JN58zxsD_KD6nB-AhvQ6dY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+prediction%E2%80%90based+optimization+strategy+to+balance+the+use+of+diesel+generator+and+emergency+battery+in+the+microgrid&rft.jtitle=International+journal+of+energy+research&rft.au=Liu%2C+Zhonghua&rft.au=Zhang%2C+Huihui&rft.au=Dong%2C+Jichang&rft.au=Yu%2C+Hua&rft.date=2020-06-10&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0363-907X&rft.eissn=1099-114X&rft.volume=44&rft.issue=7&rft.spage=5425&rft.epage=5440&rft_id=info:doi/10.1002%2Fer.5292&rft.externalDBID=10.1002%252Fer.5292&rft.externalDocID=ER5292 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0363-907X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0363-907X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0363-907X&client=summon |