Accuracy of a LiDAR-Based Individual Tree Detection and Attribute Measurement Algorithm Developed to Inform Forest Products Supply Chain and Resource Management

Individual Tree Detection (ITD) algorithms that use Airborne Laser Scanning (ALS) data can provide accurate tree locations and measurements of tree-level attributes that are required for stand-to-landscape scale forest inventory and supply chain management. While numerous ITD algorithms exist, few h...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Forests Ročník 13; číslo 1; s. 3
Hlavní autoři: Sparks, Aaron M., Smith, Alistair M.S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.01.2022
Témata:
ISSN:1999-4907, 1999-4907
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Individual Tree Detection (ITD) algorithms that use Airborne Laser Scanning (ALS) data can provide accurate tree locations and measurements of tree-level attributes that are required for stand-to-landscape scale forest inventory and supply chain management. While numerous ITD algorithms exist, few have been assessed for accuracy in stands with complex forest structure and composition, limiting their utility for operational application. In this study, we conduct a preliminary assessment of the ability of the ForestView® algorithm created by Northwest Management Incorporated to detect individual trees, classify tree species, live/dead status, canopy position, and estimate height and diameter at breast height (DBH) in a mixed coniferous forest with an average tree density of 543 (s.d. ±387) trees/hectare. ITD accuracy was high in stands with lower canopy cover (recall: 0.67, precision: 0.8) and lower in stands with higher canopy cover (recall: 0.36, precision: 0.67), mainly owing to omission of suppressed trees that were not detected under the dominant tree canopy. Tree species that were well-represented within the study area had high classification accuracies (producer’s/user’s accuracies > ~60%). The similarity between the ALS estimated and observed tree attributes was high, with no statistical difference in the ALS estimated height and DBH distributions and the field observed height and DBH distributions. RMSEs for tree-level height and DBH were 0.69 m and 7.2 cm, respectively. Overall, this algorithm appears comparable to other ITD and measurement algorithms, but quantitative analyses using benchmark datasets in other forest types and cross-comparisons with other ITD algorithms are needed.
AbstractList Individual Tree Detection (ITD) algorithms that use Airborne Laser Scanning (ALS) data can provide accurate tree locations and measurements of tree-level attributes that are required for stand-to-landscape scale forest inventory and supply chain management. While numerous ITD algorithms exist, few have been assessed for accuracy in stands with complex forest structure and composition, limiting their utility for operational application. In this study, we conduct a preliminary assessment of the ability of the ForestView® algorithm created by Northwest Management Incorporated to detect individual trees, classify tree species, live/dead status, canopy position, and estimate height and diameter at breast height (DBH) in a mixed coniferous forest with an average tree density of 543 (s.d. ±387) trees/hectare. ITD accuracy was high in stands with lower canopy cover (recall: 0.67, precision: 0.8) and lower in stands with higher canopy cover (recall: 0.36, precision: 0.67), mainly owing to omission of suppressed trees that were not detected under the dominant tree canopy. Tree species that were well-represented within the study area had high classification accuracies (producer’s/user’s accuracies > ~60%). The similarity between the ALS estimated and observed tree attributes was high, with no statistical difference in the ALS estimated height and DBH distributions and the field observed height and DBH distributions. RMSEs for tree-level height and DBH were 0.69 m and 7.2 cm, respectively. Overall, this algorithm appears comparable to other ITD and measurement algorithms, but quantitative analyses using benchmark datasets in other forest types and cross-comparisons with other ITD algorithms are needed.
Author Smith, Alistair M.S.
Sparks, Aaron M.
Author_xml – sequence: 1
  givenname: Aaron M.
  orcidid: 0000-0003-1286-3770
  surname: Sparks
  fullname: Sparks, Aaron M.
– sequence: 2
  givenname: Alistair M.S.
  orcidid: 0000-0003-0071-9958
  surname: Smith
  fullname: Smith, Alistair M.S.
BookMark eNptkctO3TAQhi0EUill0TewxIYuUnzJzctwgBbpVCAu68ixJ2CU2MEXpPM2fdQaToUq1NXM4vs__Zr5jHats4DQV0q-cy7IyUg5oYQQvoP2qRCiKAVpdv_ZP6HDEJ4yQaqmFazcR787pZKXaoPdiCVem7PupjiVATS-tNq8GJ3khO88AD6DCCoaZ7G0GncxejOkCPgXyJA8zGAj7qYH5018nDP9ApNbsie6rBqdn_GF8xAivvZOJxUDvk3LMm3w6lGarfQGgkteZae08uFN-QXtjXIKcPh3HqD7i_O71c9iffXjctWtC8VZFYtRE9XKshyIUgzoQBjUDciGVlSPgsuq0RUQ3uqGMEFFIzgjeoCyGsq2hbHiB-h46128e065Zj-boGCapAWXQs9qXtc1J4Rl9OgD-pRb29wuU4yyltZlk6mTLaW8C8HD2CsT5ev9opdm6inpX5_Wvz8tJ759SCzezNJv_sP-AYA-mRU
CitedBy_id crossref_primary_10_1109_JSTARS_2025_3528834
crossref_primary_10_33764_2411_1759_2025_30_4_32_41
crossref_primary_10_1093_forsci_fxad047
crossref_primary_10_3390_app14114479
crossref_primary_10_3390_s22228858
crossref_primary_10_3390_rs15030664
crossref_primary_10_3390_f16050784
crossref_primary_10_3390_rs17111934
crossref_primary_10_3390_f15081462
crossref_primary_10_3390_rs17132245
crossref_primary_10_1016_j_foreco_2023_121246
crossref_primary_10_3390_rs14112567
crossref_primary_10_1016_j_rsase_2025_101535
crossref_primary_10_1016_j_rse_2025_115007
crossref_primary_10_3390_f16050815
crossref_primary_10_3390_rs14143480
crossref_primary_10_3390_rs17101761
Cites_doi 10.1080/07038992.2016.1196582
10.3390/rs11070819
10.3390/rs8040333
10.1371/journal.pcbi.1009180
10.14358/PERS.70.3.351
10.3390/rs12050885
10.3390/f4010001
10.1016/j.rse.2020.112061
10.14214/sf.203
10.1080/01431160902882561
10.1016/j.isprsjprs.2018.02.002
10.1029/2008JG000748
10.1071/WF15130
10.1080/07038992.2016.1207484
10.1016/j.foreco.2016.11.041
10.1109/JSTARS.2012.2196978
10.1080/01431160701736471
10.3390/f9050268
10.3390/rs3030638
10.3390/rs3112494
10.1016/j.compag.2020.105815
10.3390/f12050550
10.3390/rs1040934
10.1016/j.rse.2012.02.023
10.3390/rs6043475
10.3390/rs11091086
10.14358/PERS.70.5.589
10.1139/cjfr-2018-0196
10.1139/X09-183
10.5589/m08-048
10.5589/m06-007
10.1016/j.rse.2014.03.038
10.1016/j.rse.2012.03.027
10.1071/WF16139
10.3390/rs1040776
10.1029/2007JG000544
10.1080/01431160701736489
10.1007/s40725-017-0051-6
10.5589/m08-056
10.1016/j.rse.2021.112540
10.1016/j.rse.2009.07.010
10.5589/m08-055
10.1080/01431160500444764
10.1080/01431160701422213
10.1080/07038992.2016.1232587
10.1093/treephys/25.7.903
10.1109/JSTARS.2019.2942811
10.3390/su12114508
10.1139/cjfr-2020-0424
10.1016/j.isprsjprs.2006.10.006
10.1016/j.foreco.2021.119155
10.3390/f5071682
10.1093/forestry/cpr051
10.5589/m06-030
10.5589/m06-005
10.1080/01431161.2021.1956699
10.1139/x11-117
10.14358/PERS.80.7.627
10.1016/S0378-1127(97)00019-4
10.14358/PERS.78.1.75
10.1016/j.rse.2017.09.037
10.1080/01431161.2016.1214302
10.1109/36.921414
10.1016/j.foreco.2017.09.019
10.1139/x04-055
10.1016/j.rse.2009.02.002
10.1080/01431161.2015.1030043
10.1016/j.rse.2016.12.022
10.1016/j.isprsjprs.2015.03.014
10.1016/S0034-4257(02)00050-0
10.1016/j.foreco.2020.118619
10.1016/j.rse.2010.01.016
10.3390/rs2040968
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
M0K
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
7S9
L.6
DOI 10.3390/f13010003
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Agricultural Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Agricultural Science Database
CrossRef
AGRICOLA
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISSN 1999-4907
ExternalDocumentID 10_3390_f13010003
GeographicLocations United States--US
Idaho
GeographicLocations_xml – name: Idaho
– name: United States--US
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ATCPS
BANNL
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
ECGQY
EDH
HCIFZ
IAG
IAO
IEP
ITC
ITG
ITH
KQ8
LK5
M0K
M7R
MODMG
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
TR2
3V.
7SN
7SS
8FK
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
OZF
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c325t-fd0c8a44b0cc2e1b02e67ea7151df93a57d5e038d70291979320dbe45b488ef53
IEDL.DBID BENPR
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000746387600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-4907
IngestDate Sun Nov 09 14:40:19 EST 2025
Sun Nov 09 06:00:43 EST 2025
Sat Nov 29 07:09:00 EST 2025
Tue Nov 18 21:47:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-fd0c8a44b0cc2e1b02e67ea7151df93a57d5e038d70291979320dbe45b488ef53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0071-9958
0000-0003-1286-3770
OpenAccessLink https://www.proquest.com/docview/2621281647?pq-origsite=%requestingapplication%
PQID 2621281647
PQPubID 2032398
ParticipantIDs proquest_miscellaneous_2636663002
proquest_journals_2621281647
crossref_citationtrail_10_3390_f13010003
crossref_primary_10_3390_f13010003
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Forests
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Shifley (ref_44) 1993; 39
Silva (ref_51) 2021; 491
Smith (ref_84) 2016; 25
Falkowski (ref_16) 2006; 32
ref_57
Holopainen (ref_10) 2014; 5
Popescu (ref_15) 2004; 16
ref_53
Maltamo (ref_72) 2004; 34
Vastaranta (ref_59) 2014; 6
Shi (ref_78) 2018; 137
(ref_79) 2009; 113
Yadav (ref_26) 2021; 42
Smith (ref_5) 2008; 34
White (ref_3) 2016; 42
Goodbody (ref_8) 2021; 51
Garrity (ref_34) 2008; 34
Bokalo (ref_65) 2013; 4
Yin (ref_55) 2016; 37
Kim (ref_80) 2009; 113
Shi (ref_25) 2021; 98
Andersen (ref_20) 2006; 32
ref_69
Tinkham (ref_7) 2018; 48
ref_68
Lindberg (ref_30) 2017; 3
Smith (ref_12) 2008; 34
ref_62
Hoover (ref_66) 2017; 385
Pham (ref_24) 2016; 50
Wang (ref_36) 2004; 70
ref_29
Leckie (ref_4) 2008; 29
Hyyppa (ref_11) 1999; 16
Yao (ref_75) 2012; 123
Dinuls (ref_23) 2012; 5
Mokros (ref_52) 2021; 104
Robison (ref_63) 2004; 25
Yancho (ref_73) 2019; 12
Edson (ref_28) 2011; 3
North (ref_45) 2017; 405
Lee (ref_37) 2010; 31
Budei (ref_27) 2018; 204
Vauhkonen (ref_70) 2012; 85
Smith (ref_21) 2008; 113
Eitel (ref_64) 2007; 28
Hudak (ref_47) 2012; 123
Tinkham (ref_14) 2016; 42
ref_31
Evans (ref_1) 2009; 1
Hyyppa (ref_71) 2001; 39
Holmgren (ref_22) 2008; 29
Bagdon (ref_67) 2021; 480
Smith (ref_86) 2014; 154
Falkowski (ref_9) 2008; 34
Souza (ref_42) 2020; 179
Mellor (ref_74) 2015; 105
Zhen (ref_39) 2015; 36
Swayze (ref_50) 2021; 263
Vauhkonen (ref_76) 2010; 114
Jeronimo (ref_17) 2018; 116
ref_82
Poznanovic (ref_19) 2014; 80
Robinson (ref_61) 2005; 25
Tinkham (ref_56) 2011; 3
Li (ref_60) 2012; 10
ref_46
Sparks (ref_85) 2017; 26
Falkowski (ref_6) 2010; 40
Silva (ref_58) 2016; 42
ref_87
ref_41
ref_40
Roussel (ref_54) 2020; 251
Hudak (ref_2) 2009; 1
McCarley (ref_48) 2017; 191
Korzukhin (ref_13) 1997; 97
Smith (ref_83) 2009; 35
ref_49
Strand (ref_33) 2008; 113
Li (ref_43) 2011; 41
Maltamo (ref_81) 2009; 43
Hudak (ref_18) 2006; 32
Gupta (ref_38) 2010; 2
Brandtberg (ref_77) 2007; 61
Strand (ref_32) 2006; 27
Pouliot (ref_35) 2002; 82
References_xml – volume: 34
  start-page: S3
  year: 2008
  ident: ref_5
  article-title: Preface: Special issue on the Remote Characterization of Vegetation Structure and Productivity: Plant to Landscape Scales
  publication-title: Can. J. Remote Sens.
– volume: 25
  start-page: 903
  year: 2004
  ident: ref_63
  article-title: Model validation using equivalence tests
  publication-title: Ecol. Model.
– volume: 42
  start-page: 554
  year: 2016
  ident: ref_58
  article-title: Imputation of individual longleaf pine (Pinus palustris Mill.) tree attributes from field and LiDAR data
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2016.1196582
– ident: ref_41
  doi: 10.3390/rs11070819
– ident: ref_29
  doi: 10.3390/rs8040333
– ident: ref_87
  doi: 10.1371/journal.pcbi.1009180
– volume: 50
  start-page: 187
  year: 2016
  ident: ref_24
  article-title: Combining QuickBird, LiDAR, and GIS topography indices to identify a single native tree species in a complex landscape using an object-based classification approach
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 70
  start-page: 351
  year: 2004
  ident: ref_36
  article-title: Individual Tree-Crown Delineation and Treetop Detection in High-Spatial-Resolution Aerial Imagery
  publication-title: Photogram. Eng. Remote Sens.
  doi: 10.14358/PERS.70.3.351
– ident: ref_49
  doi: 10.3390/rs12050885
– volume: 4
  start-page: 1
  year: 2013
  ident: ref_65
  article-title: The validation of the mixedwood growth model (MGM) for use in forest management decision making
  publication-title: Forests
  doi: 10.3390/f4010001
– volume: 116
  start-page: 336
  year: 2018
  ident: ref_17
  article-title: Applying LiDAR Individual Tree Detection to Management of Structurally Diverse Forest Landscapes
  publication-title: J. For.
– volume: 251
  start-page: 112061
  year: 2020
  ident: ref_54
  article-title: lidR: An R package for analysis of Airborne Laser Scanning (ALS) data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112061
– ident: ref_68
– volume: 43
  start-page: 203
  year: 2009
  ident: ref_81
  article-title: Predicting tree attributes and quality characteristics of Scots pine using airborne laser scanning data
  publication-title: Silva Fenn.
  doi: 10.14214/sf.203
– volume: 31
  start-page: 117
  year: 2010
  ident: ref_37
  article-title: Adaptive clustering of airborne LiDAR data to segment individual tree crowns in managed pine forests
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160902882561
– volume: 137
  start-page: 163
  year: 2018
  ident: ref_78
  article-title: Important LiDAR metrics for discriminating forest tree species in Central Europe
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.02.002
– volume: 113
  start-page: 3
  year: 2008
  ident: ref_21
  article-title: Introduction to Special Section: The Remote Characterization of Vegetation Structure: New methods and applications to landscape-regional-global scale processes
  publication-title: J. Geophys. Res.
  doi: 10.1029/2008JG000748
– volume: 25
  start-page: 158
  year: 2016
  ident: ref_84
  article-title: Towards a new paradigm in fire severity research using dose-response experiments
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF15130
– volume: 42
  start-page: 619
  year: 2016
  ident: ref_3
  article-title: Remote sensing technologies for enhancing forest inventories: A review
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2016.1207484
– volume: 385
  start-page: 236
  year: 2017
  ident: ref_66
  article-title: Equivalence of live tree carbon stocks produced by three estimation approaches for forests of the western United States
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2016.11.041
– volume: 5
  start-page: 594
  year: 2012
  ident: ref_23
  article-title: Tree Species Identification in Mixed Baltic Forest Using LiDAR and Multispectral Data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2196978
– volume: 29
  start-page: 1537
  year: 2008
  ident: ref_22
  article-title: Species identification of individual trees by combining high resolution LiDAR data with multi-spectral images
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701736471
– ident: ref_40
  doi: 10.3390/f9050268
– volume: 3
  start-page: 638
  year: 2011
  ident: ref_56
  article-title: A comparison of two open source lidar surface filtering algorithms
  publication-title: Remote Sens.
  doi: 10.3390/rs3030638
– volume: 3
  start-page: 2494
  year: 2011
  ident: ref_28
  article-title: Airborne Light Detection and Ranging (LiDAR) for Individual Tree Stem Location, Height, and Biomass Measurements
  publication-title: Remote Sens.
  doi: 10.3390/rs3112494
– volume: 179
  start-page: 105815
  year: 2020
  ident: ref_42
  article-title: Forest inventory with high-density UAV-Lidar: Machine learning approaches for predicting individual tree attributes
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105815
– ident: ref_31
  doi: 10.3390/f12050550
– volume: 1
  start-page: 934
  year: 2009
  ident: ref_2
  article-title: Review: LiDAR Utility for Natural Resource Managers
  publication-title: Remote Sens.
  doi: 10.3390/rs1040934
– volume: 123
  start-page: 25
  year: 2012
  ident: ref_47
  article-title: Quantifying aboveground forest carbon pools and fluxes from repeat LiDAR surveys
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.02.023
– volume: 6
  start-page: 3475
  year: 2014
  ident: ref_59
  article-title: Multisource single-tree inventory in the prediction of tree quality variables and logging recoveries
  publication-title: Remote Sens.
  doi: 10.3390/rs6043475
– ident: ref_53
  doi: 10.3390/rs11091086
– volume: 16
  start-page: 589
  year: 2004
  ident: ref_15
  article-title: Seeing the Trees in the Forest: Using Lidar and Multispectral Data Fusion with Local Filtering and Variable Window Size for Estimating Tree Height
  publication-title: Photogram. Eng. Remote Sens.
  doi: 10.14358/PERS.70.5.589
– volume: 48
  start-page: 1251
  year: 2018
  ident: ref_7
  article-title: Applications of the United States Forest Service Forest Inventory and Analysis dataset: A review and future directions
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2018-0196
– ident: ref_69
– volume: 40
  start-page: 184
  year: 2010
  ident: ref_6
  article-title: Landscape-scale parameterization of a tree-level forest growth model: A k-NN imputation approach incorporating LiDAR data
  publication-title: Can. J. For. Res.
  doi: 10.1139/X09-183
– volume: 34
  start-page: S268
  year: 2008
  ident: ref_12
  article-title: Pro-duction of vegetation spatial-structure maps by per-object analysis of juniper encroachment in multi-temporal aerial photographs
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m08-048
– volume: 32
  start-page: 126
  year: 2006
  ident: ref_18
  article-title: Regression modeling and mapping of coniferous forest basal area and tree density from discrete-return lidar and multispectral data
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m06-007
– volume: 154
  start-page: 322
  year: 2014
  ident: ref_86
  article-title: Remote Sensing the Vulnerability of Vegetation in Natural Terrestrial Ecosystems
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.03.038
– volume: 123
  start-page: 368
  year: 2012
  ident: ref_75
  article-title: Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne full-waveform LiDAR data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.03.027
– volume: 26
  start-page: 95
  year: 2017
  ident: ref_85
  article-title: Impacts of fire radiative flux on mature Pinus ponderosa growth and vulnerability to secondary mortality agents
  publication-title: Int. J. Wildland Fire
  doi: 10.1071/WF16139
– volume: 1
  start-page: 776
  year: 2009
  ident: ref_1
  article-title: Discrete Return lidar in Natural Resources: Recommendations for Project Planning, Data Processing, and Deliverables
  publication-title: Remote Sens.
  doi: 10.3390/rs1040776
– ident: ref_62
– volume: 113
  start-page: G01013
  year: 2008
  ident: ref_33
  article-title: Net Changes in Above Ground Woody Carbon Stock in Western Juniper Woodlands, 1946–1998
  publication-title: J. Geophys. Res.
  doi: 10.1029/2007JG000544
– volume: 29
  start-page: 1339
  year: 2008
  ident: ref_4
  article-title: Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701736489
– volume: 3
  start-page: 19
  year: 2017
  ident: ref_30
  article-title: Individual tree crown methods for 3D data from remote sensing
  publication-title: Curr. For. Rep.
  doi: 10.1007/s40725-017-0051-6
– volume: 34
  start-page: S376
  year: 2008
  ident: ref_34
  article-title: Automatic detection of shrub location, crown area, and cover using spatial wavelet analysis and aerial photography
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m08-056
– volume: 39
  start-page: 776
  year: 1993
  ident: ref_44
  article-title: A generalized methodology for estimating forest ingrowth at multiple threshold diameters
  publication-title: For. Sci.
– volume: 263
  start-page: 112540
  year: 2021
  ident: ref_50
  article-title: Influence of flight parameters on UAS-based monitoring of tree height, diameter, and density
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112540
– volume: 113
  start-page: 2499
  year: 2009
  ident: ref_80
  article-title: Distinguishing between live and dead standing tree biomass on the North Rim of Grand Canyon National Park, USA using small-footprint lidar data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.07.010
– volume: 34
  start-page: S338
  year: 2008
  ident: ref_9
  article-title: The influence of conifer forest canopy cover upon the accuracy of two individual tree measurement algorithms using lidar data
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m08-055
– volume: 27
  start-page: 2049
  year: 2006
  ident: ref_32
  article-title: Wavelet estimation of plant spatial patterns in multi-temporal aerial photography
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160500444764
– volume: 28
  start-page: 4183
  year: 2007
  ident: ref_64
  article-title: Using in-situ spectroradiometery to evaluate new RapidEye satellite data for prediction of wheat nitrogen status
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701422213
– ident: ref_82
– volume: 42
  start-page: 400
  year: 2016
  ident: ref_14
  article-title: Development of height-volume relationships in second growth Abies grandis for use with aerial LiDAR
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.2016.1232587
– volume: 25
  start-page: 903
  year: 2005
  ident: ref_61
  article-title: A regression-based equivalence test for model validation: Shifting the burden of proof
  publication-title: Tree Physiol.
  doi: 10.1093/treephys/25.7.903
– volume: 12
  start-page: 4131
  year: 2019
  ident: ref_73
  article-title: Fine-Scale Spatial and Spectral Clustering of UAV-Acquired Digital Aerial Photogrammetric (DAP) Point Clouds for Individual Tree Crown Detection and Segmentation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2942811
– ident: ref_46
  doi: 10.3390/su12114508
– volume: 51
  start-page: 972
  year: 2021
  ident: ref_8
  article-title: Airborne laser scanning for quantifying criteria and indicators of sustainable forest management in Canada
  publication-title: Can. J. For. Res.
  doi: 10.1139/cjfr-2020-0424
– volume: 61
  start-page: 325
  year: 2007
  ident: ref_77
  article-title: Classifying individual tree species under leaf-off and leaf-on conditions using airborne lidar
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2006.10.006
– volume: 491
  start-page: 119155
  year: 2021
  ident: ref_51
  article-title: Beyond trees: Mapping total aboveground biomass density in the Brazilian savanna using high-density UAV-lidar data
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2021.119155
– volume: 5
  start-page: 1682
  year: 2014
  ident: ref_10
  article-title: Outlook for the next generation’s precision forestry in Finland
  publication-title: Forests
  doi: 10.3390/f5071682
– volume: 85
  start-page: 27
  year: 2012
  ident: ref_70
  article-title: Comparative testing of single-tree detection algorithms under different types of forest
  publication-title: Forestry
  doi: 10.1093/forestry/cpr051
– volume: 32
  start-page: 355
  year: 2006
  ident: ref_20
  article-title: A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m06-030
– volume: 16
  start-page: 27
  year: 1999
  ident: ref_11
  article-title: Detecting and estimating attributes for single tree using laser scanner
  publication-title: Photogramm. J. Finl.
– volume: 32
  start-page: 153
  year: 2006
  ident: ref_16
  article-title: Automated estimation of individual conifer tree height and crown diameter via Two-dimensional spatial wavelet analysis of lidar data
  publication-title: Can. J. Remote Sens.
  doi: 10.5589/m06-005
– volume: 42
  start-page: 7952
  year: 2021
  ident: ref_26
  article-title: Tree crown segmentation and species classification in a wet eucalypt forest from airborne hyperspectral and LiDAR data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2021.1956699
– volume: 41
  start-page: 10
  year: 2011
  ident: ref_43
  article-title: Modeling annualized occurrence, frequency, and composition of ingrowth using mixed-effects zero-inflated models and permanent plots in the Acadian Forest Region of North America
  publication-title: Can. J. For. Res.
  doi: 10.1139/x11-117
– volume: 98
  start-page: 102311
  year: 2021
  ident: ref_25
  article-title: Mapping individual silver fir trees using hyperspectral and LiDAR data in a Central European mixed forest
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 80
  start-page: 45
  year: 2014
  ident: ref_19
  article-title: An accuracy assessment of tree detection algorithms in juniper woodlands
  publication-title: Photogram. Eng. Remote Sens.
  doi: 10.14358/PERS.80.7.627
– volume: 97
  start-page: 1
  year: 1997
  ident: ref_13
  article-title: Biomass equations for sixty-five North American tree species
  publication-title: For. Ecol. Manag.
  doi: 10.1016/S0378-1127(97)00019-4
– volume: 10
  start-page: 75
  year: 2012
  ident: ref_60
  article-title: A New Method for Segmenting Individual Trees from the Lidar Point Cloud
  publication-title: Photogram. Eng. Remote Sens.
  doi: 10.14358/PERS.78.1.75
– volume: 204
  start-page: 632
  year: 2018
  ident: ref_27
  article-title: Identifying the genus or species of individual trees using a three-wavelength airborne lidar system
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.09.037
– volume: 37
  start-page: 4521
  year: 2016
  ident: ref_55
  article-title: How to assess the accuracy of the individual tree-based forest inventory derived from remotely sensed data: A review
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1214302
– volume: 39
  start-page: 969
  year: 2001
  ident: ref_71
  article-title: A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.921414
– volume: 405
  start-page: 166
  year: 2017
  ident: ref_45
  article-title: Cover of tall trees best predicts California spotted owl habitat
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2017.09.019
– volume: 34
  start-page: 1791
  year: 2004
  ident: ref_72
  article-title: The accuracy of estimating individual tree variables with airborne laser scanning in a boreal nature reserve
  publication-title: Can. J. For. Res.
  doi: 10.1139/x04-055
– volume: 113
  start-page: 1163
  year: 2009
  ident: ref_79
  article-title: Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.02.002
– volume: 35
  start-page: 447
  year: 2009
  ident: ref_83
  article-title: A cross-comparison of field, spectral, and lidar estimates of forest canopy cover
  publication-title: Can. J. For. Res.
– volume: 36
  start-page: 1965
  year: 2015
  ident: ref_39
  article-title: Agent-based region growing for individual tree crown delineation from airborne laser scanning (ALS) data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2015.1030043
– volume: 191
  start-page: 419
  year: 2017
  ident: ref_48
  article-title: Multi-temporal LiDAR and Landsat quantification of fire induced changes to forest structure
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.12.022
– volume: 104
  start-page: 102512
  year: 2021
  ident: ref_52
  article-title: Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 105
  start-page: 155
  year: 2015
  ident: ref_74
  article-title: Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.03.014
– volume: 82
  start-page: 322
  year: 2002
  ident: ref_35
  article-title: Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00050-0
– ident: ref_57
– volume: 480
  start-page: 118619
  year: 2021
  ident: ref_67
  article-title: A model evaluation framework applied to the Forest Vegetation Simulator (FVS) in Colorado and Wyoming lodgepole pine forests
  publication-title: For. Ecol. Manag.
  doi: 10.1016/j.foreco.2020.118619
– volume: 114
  start-page: 1263
  year: 2010
  ident: ref_76
  article-title: Imputation of single-tree attributes using airborne laser scanning-based height, intensity, and alpha shape metrics
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.01.016
– volume: 2
  start-page: 968
  year: 2010
  ident: ref_38
  article-title: Comparative analysis of clustering-based approaches for 3-D single tree detection using airborne fullwave LiDAR data
  publication-title: Remote Sens.
  doi: 10.3390/rs2040968
SSID ssj0000578924
Score 2.3440964
Snippet Individual Tree Detection (ITD) algorithms that use Airborne Laser Scanning (ALS) data can provide accurate tree locations and measurements of tree-level...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3
SubjectTerms Accuracy
Airborne lasers
Airborne sensing
Algorithms
Biomass
Canopies
canopy
Coniferous forests
data collection
Datasets
Diameters
Drones
forest inventory
Forest products
Forestry
Forests
Landowners
Lasers
Lidar
Plant species
Proprietary
Recall
Remote sensing
Resource management
Software
Species classification
supply chain
supply chain management
Supply chains
tree and stand measurements
Trees
Unmanned aerial vehicles
Title Accuracy of a LiDAR-Based Individual Tree Detection and Attribute Measurement Algorithm Developed to Inform Forest Products Supply Chain and Resource Management
URI https://www.proquest.com/docview/2621281647
https://www.proquest.com/docview/2636663002
Volume 13
WOSCitedRecordID wos000746387600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agricultural Science Database
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: M0K
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: PCBAR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: PATMY
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: PIMPY
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZoi1AvvBELpRoQBy5Ws3YSJyeUtltRwa6iqkjlFDn2hK5UknY3i9QLv4WfyjjxZlUJceGSQzJyLM143p6PsfdxasmOhWNeknHmoTQhT8jr54mOI1TWRjY1HdiEms2Si4s09wm3pW-rXOvETlHbxrgc-YGIhSv6xKH6eH3DHWqUq656CI0ttuMmlZGc7xxOZvnZkGUhbyShCKMfKSQpvj-oSGm7nLa8a4ju6uHOuJw8-t9tPWYPvVsJWS8HT9g9rJ-yBw5304G5PWO_M2NWC21uoalAw5f5cXbGD8mCWTgdrmTB-QIRjrHt2rNq0LWFrO0hsRCmm2wiZFffaRPt5Q_wTUe0TttAf7cJ-t9C3g-TXUKHHHoLR5d63i-6rhnApvnmOft6Mjk_-sQ9OAM3UkQtr2xgEh2GZWCMwHEZCIwVakUehK1SqSNlIwxkYlUg0nFKakAEtsQwKkllYBXJF2y7bmp8yaBSSkeGnBFr0hB1XJZ2rAymwmCl41iN2Ic1pwrjJ5c7AI2rgiIYx9RiYOqIvRtIr_txHX8j2lvzsvAndllsGDlib4fPdNZcAUXX2KwcjaRoT5IRefXvJV6zXeGuSXSpmj223S5W-IbdNz_b-XKx74V0n21Ng8_u-WtC7_LTaf7tDymz94E
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB1VKYJe-EYECgwIJC5WnV3bax8QMg1VoyZRhIJUTma9u6aRWrskDij_hl_Ab2TWX1ElxK0Hzl6tZft53szszDyA10Gkice8gZMSOTseV54TktfvhDLwjdDa15GqxCbEdBqenkazHfjd9sLYssrWJlaGWhfK5sgPWMDsoU_gifeX3x2rGmVPV1sJjRoWJ2bzk0K21bvRkL7vG8aOPs4Pj51GVcBRnPmlk2lXhdLzUlcpZgapy0wgjBREfTqLuPSF9o3LQy1cFg0iwi9zdWo8PyWsm8yqRJDJ3_Us2HuwOxtNZl-6rA55PyFFNPUII84j9yAjkrA5dH6V-K7a_YrMju78b6_hLtxu3GaMa5zfgx2T34ebVlfUitU9gF-xUuulVBssMpQ4XgzjT84HYmiNo67lDOdLY3Boyqr8LEeZa4zLWvLL4GSbLcX4_Bs9dHl2gU1RFe1TFlj3bmF9W5zVw3JXWCmjbvDwTC7qTdszEdwWFz2Ez9fyfh5BLy9y8xgwE0L6ipwtrSLPyCBN9UAoEzFlMhkEog9vW2QkqpnMbgVCzhOK0CyIkg5EfXjVLb2sx5H8bdF-i52ksUirZAucPrzsLpMtsQdEMjfF2q7hFM1yIskn_97iBdw6nk_GyXg0PXkKe8y2hFRpqX3olcu1eQY31I9ysVo-b34QhK_XDcY_-fhQhw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB5VKaq48EYNFBgQSFysOOvHeg8ImYaIqG1koSKVk1nvrmmkYpfEAeXf8Dv4dcz6FVVC3Hrg7NVatj_PNzM7Mx_Ay1Bo4jF_7GREzo7vKd-JyOt3IhkGhmsdaKFqsQk-n0dnZyLZgd9dL4wtq-xsYm2odalsjnzEQmYPfUKfj_K2LCKZTN9efnesgpQ9ae3kNBqIHJnNTwrfVm9mE_rWrxibvj89_OC0CgOO8lhQObl2VSR9P3OVYmacucyE3EhONKhz4cmA68C4XqS5y8RYEJaZqzPjBxnh3uRWMYLM_y655D4bwG4yO0k-9xke8oQiim6acUaeJ9xRToRh8-neVRK8ygE1sU1v_8-v5A7cat1pjBv834UdU9yDPas3akXs7sOvWKn1UqoNljlKPF5M4o_OO2JujbO-FQ1Pl8bgxFR1WVqBstAYV40UmMGTbRYV44uv9NDV-Tdsi61on6rEpqcLm9ti0gzRXWGtmLrBw3O5aDbtzkpwW3T0AD5dy_t5CIOiLMw-YM65DBQ5YVoJ38gwy_SYKyOYMrkMQz6E1x1KUtVObLfCIRcpRW4WUGkPqCG86JdeNmNK_rbooMNR2lqqVboF0RCe95fJxtiDI1mYcm3XeBTlekSej_69xTPYIwSmx7P50WO4yWynSJ2tOoBBtVybJ3BD_agWq-XT9l9B-HLdWPwDjnBZRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+of+a+LiDAR-Based+Individual+Tree+Detection+and+Attribute+Measurement+Algorithm+Developed+to+Inform+Forest+Products+Supply+Chain+and+Resource+Management&rft.jtitle=Forests&rft.au=Sparks%2C+Aaron+M&rft.au=Smith%2C+Alistair+M.S.&rft.date=2022-01-01&rft.issn=1999-4907&rft.eissn=1999-4907&rft.volume=13&rft.issue=1&rft_id=info:doi/10.3390%2Ff13010003&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4907&client=summon