Using multiple graphics accelerators to solve the two-dimensional inverse heat conduction problem

In this paper, we present a novel parallel algorithm implemented on graphics accelerators to solve the two-dimensional inverse heat conduction problem (estimation of the temporo-spatial heat transfer coefficients without any prior knowledge of the thermal boundary conditions) based on Particle Swarm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering Jg. 336; S. 286 - 303
Hauptverfasser: Szénási, Sándor, Felde, Imre
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.07.2018
Elsevier BV
Schlagworte:
ISSN:0045-7825, 1879-2138
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we present a novel parallel algorithm implemented on graphics accelerators to solve the two-dimensional inverse heat conduction problem (estimation of the temporo-spatial heat transfer coefficients without any prior knowledge of the thermal boundary conditions) based on Particle Swarm Optimisation method. In the absence of analytical solutions, there are several heuristic methods to solve the problem, but the unacceptable high runtime (several days) makes these unsuitable for practical use. This paper presents the methods on how to adapt the original sequential algorithm to an efficient data-parallel one, keeping in mind the main features of graphics processing units (launching multiple threads on all multiprocessors, storing data in fast on-chip memory, eliminating warp divergence and memory transfer latency, using the host and device together, etc.). The achieved ∼45× speed-up (without any accuracy degradation) makes the heuristic methods suitable for practical use. Some of the proposed ideas are generally useable; therefore, this paper can be considered a step-by-step guide for researchers of other fields to speed-up general purpose calculations and evaluate the results. •Our goal is to solve the two-dimensional IHCP using heuristic optimisation methods.•A multi-level parallel algorithm implemented on GPU and CPU cores is presented.•It is 100x faster than the original sequential one (the accuracy is the same).•Details of optimisation (memory transfers, warp divergence, etc.) are discussed.
AbstractList In this paper, we present a novel parallel algorithm implemented on graphics accelerators to solve the two-dimensional inverse heat conduction problem (estimation of the temporo-spatial heat transfer coefficients without any prior knowledge of the thermal boundary conditions) based on Particle Swarm Optimisation method. In the absence of analytical solutions, there are several heuristic methods to solve the problem, but the unacceptable high runtime (several days) makes these unsuitable for practical use. This paper presents the methods on how to adapt the original sequential algorithm to an efficient data-parallel one, keeping in mind the main features of graphics processing units (launching multiple threads on all multiprocessors, storing data in fast on-chip memory, eliminating warp divergence and memory transfer latency, using the host and device together, etc.). The achieved ∼45× speed-up (without any accuracy degradation) makes the heuristic methods suitable for practical use. Some of the proposed ideas are generally useable; therefore, this paper can be considered a step-by-step guide for researchers of other fields to speed-up general purpose calculations and evaluate the results.
In this paper, we present a novel parallel algorithm implemented on graphics accelerators to solve the two-dimensional inverse heat conduction problem (estimation of the temporo-spatial heat transfer coefficients without any prior knowledge of the thermal boundary conditions) based on Particle Swarm Optimisation method. In the absence of analytical solutions, there are several heuristic methods to solve the problem, but the unacceptable high runtime (several days) makes these unsuitable for practical use. This paper presents the methods on how to adapt the original sequential algorithm to an efficient data-parallel one, keeping in mind the main features of graphics processing units (launching multiple threads on all multiprocessors, storing data in fast on-chip memory, eliminating warp divergence and memory transfer latency, using the host and device together, etc.). The achieved ∼45× speed-up (without any accuracy degradation) makes the heuristic methods suitable for practical use. Some of the proposed ideas are generally useable; therefore, this paper can be considered a step-by-step guide for researchers of other fields to speed-up general purpose calculations and evaluate the results. •Our goal is to solve the two-dimensional IHCP using heuristic optimisation methods.•A multi-level parallel algorithm implemented on GPU and CPU cores is presented.•It is 100x faster than the original sequential one (the accuracy is the same).•Details of optimisation (memory transfers, warp divergence, etc.) are discussed.
Author Szénási, Sándor
Felde, Imre
Author_xml – sequence: 1
  givenname: Sándor
  surname: Szénási
  fullname: Szénási, Sándor
  email: szenasi.sandor@nik.uni-obuda.hu
– sequence: 2
  givenname: Imre
  surname: Felde
  fullname: Felde, Imre
  email: imre.felde@nik.uni-obuda.hu
BookMark eNp9kMtqwzAQRUVpoUnaD-hO0LVdPexYpqsS-oJAN81aKNI4kbEtV5JT-vdVSFddZGCYxdwzjztHl4MbAKE7SnJK6PKhzXWvckaoyAnPCSsu0IyKqs4Y5eISzQgpyqwSrLxG8xBakkJQNkNqE-yww_3URTt2gHdejXurA1ZaQwdeRecDjg4H1x0Ax33Kb5cZ28MQrBtUh-1wAB8A70FFrN1gJh1TB4_ebTvob9BVo7oAt391gTYvz5-rt2z98fq-elpnmrMyZo0QrCgMqbe8XBZNwVhRUWCmbhintSGloWwLnAptaJl0qqoYg7ouFW9AiYIv0P1pbtr7NUGIsnWTTwcGyUhFOWEVoUlFTyrtXQgeGjl62yv_IymRRydlK5OT8uikJFwmJxNT_WO0jer4Y_TKdmfJxxMJ6fGDBS-DtjBoMNaDjtI4e4b-BZsLkGM
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2021_122076
crossref_primary_10_3390_data4030090
crossref_primary_10_1016_j_cma_2020_113217
crossref_primary_10_1016_j_ijthermalsci_2024_109669
crossref_primary_10_3390_s22197579
crossref_primary_10_1016_j_renene_2023_119790
crossref_primary_10_3390_a13060133
Cites_doi 10.12700/APH.11.09.2014.09.1
10.1590/S1678-58782006000100001
10.1016/j.jmatprotec.2015.06.016
10.1016/j.ijheatmasstransfer.2006.10.045
10.1016/S1665-6423(14)71676-1
10.1016/j.cma.2016.03.038
10.1016/j.parco.2014.02.002
10.1080/10407790903116469
10.1080/10407780490478533
10.1016/j.ijheatmasstransfer.2016.04.073
10.1016/j.cma.2016.08.016
10.1016/j.jpdc.2016.04.014
10.1109/IPDPS.2010.5470413
10.1016/j.ijheatmasstransfer.2013.11.028
10.1109/ICNN.1995.488968
10.1016/j.jpdc.2007.09.004
10.1016/j.parco.2012.10.002
10.1016/j.cpc.2012.06.005
10.1016/j.jqsrt.2007.07.013
10.1016/j.jpdc.2012.04.003
10.1016/j.ijheatmasstransfer.2016.06.103
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Jul 1, 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Jul 1, 2018
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2018.03.024
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
EndPage 303
ExternalDocumentID 10_1016_j_cma_2018_03_024
S004578251730186X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
JQ2
KR7
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c325t-f88244d09b3564f422471e2d9f2319d05d12be318cd154d0a7722e995a3fea843
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432752200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Fri Jul 25 02:34:49 EDT 2025
Sat Nov 29 06:16:37 EST 2025
Tue Nov 18 22:42:20 EST 2025
Fri Feb 23 02:20:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Inverse heat conduction problem
Particle Swarm Optimisation
Data parallel algorithm
Genetic algorithm
Graphics accelerators
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-f88244d09b3564f422471e2d9f2319d05d12be318cd154d0a7722e995a3fea843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2071302701
PQPubID 2045269
PageCount 18
ParticipantIDs proquest_journals_2071302701
crossref_primary_10_1016_j_cma_2018_03_024
crossref_citationtrail_10_1016_j_cma_2018_03_024
elsevier_sciencedirect_doi_10_1016_j_cma_2018_03_024
PublicationCentury 2000
PublicationDate 2018-07-01
2018-07-00
20180701
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Skinderowicz (b26) 2016; 98
L. Chen, O. Villa, S. Krishnamoorthy, G.R. Gao, Dynamic load balancing on single- and multi-GPU systems, in: Proceedings of the 2010 IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2010, 2010
Martínez-Frutos, Herrero-Pérez (b32) 2016; 311
Felde, Szénási (b23) 2016; 11
Cook (b30) 2012
Gur, Pan (b2) 2009
Szénási, Felde, Kovács (b21) 2015
Klimeš, Štětina (b11) 2015; 226
URL
Beck, Blackwell, Clair (b3) 1985
Sanders, Kandrot (b29) 2010
Alifanov (b4) 1994
Xu (b6) 2016; 103
Oksman, Yu, Kytönen, Louhenkilpi (b1) 2014; 11
Colaço, Orlande, Dulikravich (b14) 2006; 28
Cotronis, Konstantinidis, Louka, Missirlis (b9) 2014; 40
I. Felde, S. Szénási, A. Kenéz, S. Wei, R. Colas, Determination of complex thermal boundary conditions using a particle swarm optimization method in: 5th International Conference on Distortion Engineering, Bremen, 2015, pp. 227–236.
(b27) 2014
Vakili, Gadala (b19) 2009; 56
Kim, Baek (b5) 2004; 46
A.L. Fazenda, C.L. Mendes, L.V. Kale, J. Panetta, E.R. Rodrigues, Dynamic load balancing in GPU-based systems - early experiments
Jacobsen, Senocak (b10) 2013; 39
Rong, Zhang, Shi, Guo (b12) 2014; 70
Özisik, Orlande (b15) 2000
Satake, Yoshimori, Suzuki (b13) 2012; 183
Lin, Hsieh, Chang, Hsiung (b35) 2014; 12
Verma, Balaji (b16) 2007; 50
Kareem, Gao, Ahmed (b7) 2016; 100
.
Qi, Ruan, Shi, An, Tan (b18) 2008; 109
Bana, Kruzel, Bielaski (b25) 2016; 305
Cheng, Grossman, Ty McKercher (b31) 2013
Szénási, Felde (b20) 2016
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Neural Networks, 1995. Proceedings., IEEE International Conference on, Vol. 4, 1995, pp. 1942–1948
Ltaief, Gabriel, Garbey (b8) 2008; 68
Brodtkorb, Hagen, Sætra (b24) 2013; 73
Kirk, Hwu (b28) 2010
10.1016/j.cma.2018.03.024_b34
10.1016/j.cma.2018.03.024_b33
Felde (10.1016/j.cma.2018.03.024_b23) 2016; 11
Lin (10.1016/j.cma.2018.03.024_b35) 2014; 12
Beck (10.1016/j.cma.2018.03.024_b3) 1985
Brodtkorb (10.1016/j.cma.2018.03.024_b24) 2013; 73
Özisik (10.1016/j.cma.2018.03.024_b15) 2000
Cook (10.1016/j.cma.2018.03.024_b30) 2012
Xu (10.1016/j.cma.2018.03.024_b6) 2016; 103
Klimeš (10.1016/j.cma.2018.03.024_b11) 2015; 226
Skinderowicz (10.1016/j.cma.2018.03.024_b26) 2016; 98
Colaço (10.1016/j.cma.2018.03.024_b14) 2006; 28
Qi (10.1016/j.cma.2018.03.024_b18) 2008; 109
Szénási (10.1016/j.cma.2018.03.024_b21) 2015
10.1016/j.cma.2018.03.024_b22
Oksman (10.1016/j.cma.2018.03.024_b1) 2014; 11
Sanders (10.1016/j.cma.2018.03.024_b29) 2010
Verma (10.1016/j.cma.2018.03.024_b16) 2007; 50
Cheng (10.1016/j.cma.2018.03.024_b31) 2013
Kareem (10.1016/j.cma.2018.03.024_b7) 2016; 100
Martínez-Frutos (10.1016/j.cma.2018.03.024_b32) 2016; 311
Ltaief (10.1016/j.cma.2018.03.024_b8) 2008; 68
Cotronis (10.1016/j.cma.2018.03.024_b9) 2014; 40
Alifanov (10.1016/j.cma.2018.03.024_b4) 1994
Kim (10.1016/j.cma.2018.03.024_b5) 2004; 46
(10.1016/j.cma.2018.03.024_b27) 2014
Jacobsen (10.1016/j.cma.2018.03.024_b10) 2013; 39
Gur (10.1016/j.cma.2018.03.024_b2) 2009
Satake (10.1016/j.cma.2018.03.024_b13) 2012; 183
Rong (10.1016/j.cma.2018.03.024_b12) 2014; 70
Szénási (10.1016/j.cma.2018.03.024_b20) 2016
Kirk (10.1016/j.cma.2018.03.024_b28) 2010
10.1016/j.cma.2018.03.024_b17
Vakili (10.1016/j.cma.2018.03.024_b19) 2009; 56
Bana (10.1016/j.cma.2018.03.024_b25) 2016; 305
References_xml – volume: 50
  start-page: 1706
  year: 2007
  end-page: 1714
  ident: b16
  article-title: Multi-parameter estimation in combined conduction-radiation from a plane parallel participating medium using genetic algorithms
  publication-title: Int. J. Heat Mass Transfer
– year: 2013
  ident: b31
  article-title: Professional CUDA C Programming
– year: 1994
  ident: b4
  article-title: Inverse Heat Transfer Problems
– reference: I. Felde, S. Szénási, A. Kenéz, S. Wei, R. Colas, Determination of complex thermal boundary conditions using a particle swarm optimization method in: 5th International Conference on Distortion Engineering, Bremen, 2015, pp. 227–236.
– year: 2010
  ident: b28
  article-title: Programming massively parallel processors: A hands-on approach
– volume: 56
  start-page: 119
  year: 2009
  end-page: 141
  ident: b19
  article-title: Effectiveness and efficiency of particle swarm optimization technique in inverse heat conduction analysis
  publication-title: Numer. Heat Transf. Part A Fundam.
– volume: 73
  start-page: 4
  year: 2013
  end-page: 13
  ident: b24
  article-title: Graphics processing unit (GPU) programming strategies and trends in GPU computing
  publication-title: J. Parallel Distrib. Comput.
– year: 2009
  ident: b2
  article-title: Handbook of Thermal Process Modeling of Steels
– volume: 305
  start-page: 827
  year: 2016
  end-page: 848
  ident: b25
  article-title: Finite element numerical integration for first order approximations on multi-and many-core architectures
  publication-title: Comput. Methods Appl. Mech. Engrg.
– reference: A.L. Fazenda, C.L. Mendes, L.V. Kale, J. Panetta, E.R. Rodrigues, Dynamic load balancing in GPU-based systems - early experiments,
– volume: 100
  start-page: 121
  year: 2016
  end-page: 130
  ident: b7
  article-title: Unsteady simulations of mixed convection heat transfer in a 3D closed lid-driven cavity
  publication-title: Int. J. Heat Mass Transfer
– start-page: 365
  year: 2015
  end-page: 369
  ident: b21
  article-title: Solving one-dimensional IHCP with particle swarm optimization using graphics accelerators
  publication-title: 10th Jubilee IEEE International Symposium on Applied Computational Intelligence and Informatics
– reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Neural Networks, 1995. Proceedings., IEEE International Conference on, Vol. 4, 1995, pp. 1942–1948,
– volume: 70
  start-page: 1040
  year: 2014
  end-page: 1049
  ident: b12
  article-title: Numerical study of heat transfer enhancement in a pipe filled with porous media by axisymmetric TLB model based on GPU
  publication-title: Int. J. Heat Mass Transfer
– volume: 103
  start-page: 285
  year: 2016
  end-page: 290
  ident: b6
  article-title: A novel numerical method for solving heat conduction problems
  publication-title: Int. J. Heat Mass Transfer
– year: 1985
  ident: b3
  article-title: Inverse Heat Conduction
– volume: 46
  start-page: 367
  year: 2004
  end-page: 381
  ident: b5
  article-title: Inverse surface radiation analysis in an axisymmetric cylindrical enclosure using a hybrid genetic algorithm
  publication-title: Numer. Heat Transfer, Part A-Appl.
– volume: 28
  start-page: 1
  year: 2006
  end-page: 24
  ident: b14
  article-title: Inverse and optimization problems in heat transfer
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
– volume: 98
  start-page: 48
  year: 2016
  end-page: 60
  ident: b26
  article-title: The GPU-based parallel ant colony system
  publication-title: J. Parallel Distrib. Comput.
– volume: 11
  start-page: 288
  year: 2016
  end-page: 300
  ident: b23
  article-title: Estimation of temporospatial boundary conditions using a particle swarm optimisation technique
  publication-title: Int. J. Microstruct. Mater. Prop.
– year: 2014
  ident: b27
  article-title: CUDA C Programming Guide
– reference: , URL
– volume: 183
  start-page: 2376
  year: 2012
  end-page: 2385
  ident: b13
  article-title: Optimizations of a GPU accelerated heat conduction equation by a programming of CUDA Fortran from an analysis of a PTX file
  publication-title: Comput. Phys. Comm.
– volume: 11
  year: 2014
  ident: b1
  article-title: The effective thermal conductivity method in continuous casting of steel
  publication-title: Acta Polytech. Hung.
– volume: 226
  start-page: 1
  year: 2015
  end-page: 14
  ident: b11
  article-title: A rapid GPU-based heat transfer and solidification model for dynamic computer simulations of continuous steel casting
  publication-title: J. Mater Process. Technol.
– volume: 311
  start-page: 393
  year: 2016
  end-page: 414
  ident: b32
  article-title: Large-scale robust topology optimization using multi-GPU systems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 39
  start-page: 1
  year: 2013
  end-page: 20
  ident: b10
  article-title: Multi-level parallelism for incompressible flow computations on GPU clusters
  publication-title: Parallel Comput.
– year: 2000
  ident: b15
  article-title: Inverse Heat Transfer: Fundamentals and Applications
– volume: 68
  start-page: 663
  year: 2008
  end-page: 677
  ident: b8
  article-title: Fault tolerant algorithms for heat transfer problems
  publication-title: J. Parallel Distrib. Comput.
– reference: .
– reference: L. Chen, O. Villa, S. Krishnamoorthy, G.R. Gao, Dynamic load balancing on single- and multi-GPU systems, in: Proceedings of the 2010 IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2010, 2010,
– volume: 40
  start-page: 173
  year: 2014
  end-page: 185
  ident: b9
  article-title: A comparison of CPU and GPU implementations for solving the Convection Diffusion equation using the local Modified SOR method
  publication-title: Parallel Comput.
– year: 2012
  ident: b30
  article-title: CUDA Programming
– volume: 12
  start-page: 1176
  year: 2014
  end-page: 1186
  ident: b35
  article-title: Efficient workload balancing on heterogeneous gpus using mixedinteger non-linear programming
  publication-title: J. Appl. Res. Technol.
– start-page: 279
  year: 2010
  ident: b29
  article-title: CUDA by example
  publication-title: Review Literature and Arts of the Americas
– start-page: 263
  year: 2016
  end-page: 267
  ident: b20
  article-title: Heat transfer simulation using GPUs
  publication-title: 20th IEEE Jubilee International Conference on Intelligent Engineering Systems
– volume: 109
  start-page: 476
  year: 2008
  end-page: 493
  ident: b18
  article-title: Application of multi-phase particle swarm optimization technique to inverse radiation problem
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
– volume: 11
  issue: 9
  year: 2014
  ident: 10.1016/j.cma.2018.03.024_b1
  article-title: The effective thermal conductivity method in continuous casting of steel
  publication-title: Acta Polytech. Hung.
  doi: 10.12700/APH.11.09.2014.09.1
– start-page: 365
  year: 2015
  ident: 10.1016/j.cma.2018.03.024_b21
  article-title: Solving one-dimensional IHCP with particle swarm optimization using graphics accelerators
– volume: 11
  start-page: 288
  issue: 3/4
  year: 2016
  ident: 10.1016/j.cma.2018.03.024_b23
  article-title: Estimation of temporospatial boundary conditions using a particle swarm optimisation technique
  publication-title: Int. J. Microstruct. Mater. Prop.
– volume: 28
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.cma.2018.03.024_b14
  article-title: Inverse and optimization problems in heat transfer
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1590/S1678-58782006000100001
– volume: 226
  start-page: 1
  year: 2015
  ident: 10.1016/j.cma.2018.03.024_b11
  article-title: A rapid GPU-based heat transfer and solidification model for dynamic computer simulations of continuous steel casting
  publication-title: J. Mater Process. Technol.
  doi: 10.1016/j.jmatprotec.2015.06.016
– volume: 50
  start-page: 1706
  issue: 9–10
  year: 2007
  ident: 10.1016/j.cma.2018.03.024_b16
  article-title: Multi-parameter estimation in combined conduction-radiation from a plane parallel participating medium using genetic algorithms
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2006.10.045
– year: 2012
  ident: 10.1016/j.cma.2018.03.024_b30
– volume: 12
  start-page: 1176
  issue: 6
  year: 2014
  ident: 10.1016/j.cma.2018.03.024_b35
  article-title: Efficient workload balancing on heterogeneous gpus using mixedinteger non-linear programming
  publication-title: J. Appl. Res. Technol.
  doi: 10.1016/S1665-6423(14)71676-1
– year: 2009
  ident: 10.1016/j.cma.2018.03.024_b2
– year: 2000
  ident: 10.1016/j.cma.2018.03.024_b15
– volume: 305
  start-page: 827
  year: 2016
  ident: 10.1016/j.cma.2018.03.024_b25
  article-title: Finite element numerical integration for first order approximations on multi-and many-core architectures
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2016.03.038
– volume: 40
  start-page: 173
  issue: 7
  year: 2014
  ident: 10.1016/j.cma.2018.03.024_b9
  article-title: A comparison of CPU and GPU implementations for solving the Convection Diffusion equation using the local Modified SOR method
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2014.02.002
– volume: 56
  start-page: 119
  issue: 2
  year: 2009
  ident: 10.1016/j.cma.2018.03.024_b19
  article-title: Effectiveness and efficiency of particle swarm optimization technique in inverse heat conduction analysis
  publication-title: Numer. Heat Transf. Part A Fundam.
  doi: 10.1080/10407790903116469
– year: 1994
  ident: 10.1016/j.cma.2018.03.024_b4
– volume: 46
  start-page: 367
  issue: 4
  year: 2004
  ident: 10.1016/j.cma.2018.03.024_b5
  article-title: Inverse surface radiation analysis in an axisymmetric cylindrical enclosure using a hybrid genetic algorithm
  publication-title: Numer. Heat Transfer, Part A-Appl.
  doi: 10.1080/10407780490478533
– volume: 100
  start-page: 121
  year: 2016
  ident: 10.1016/j.cma.2018.03.024_b7
  article-title: Unsteady simulations of mixed convection heat transfer in a 3D closed lid-driven cavity
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.04.073
– volume: 311
  start-page: 393
  year: 2016
  ident: 10.1016/j.cma.2018.03.024_b32
  article-title: Large-scale robust topology optimization using multi-GPU systems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2016.08.016
– volume: 98
  start-page: 48
  year: 2016
  ident: 10.1016/j.cma.2018.03.024_b26
  article-title: The GPU-based parallel ant colony system
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2016.04.014
– ident: 10.1016/j.cma.2018.03.024_b22
– ident: 10.1016/j.cma.2018.03.024_b34
  doi: 10.1109/IPDPS.2010.5470413
– start-page: 279
  year: 2010
  ident: 10.1016/j.cma.2018.03.024_b29
  article-title: CUDA by example
– volume: 70
  start-page: 1040
  year: 2014
  ident: 10.1016/j.cma.2018.03.024_b12
  article-title: Numerical study of heat transfer enhancement in a pipe filled with porous media by axisymmetric TLB model based on GPU
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2013.11.028
– start-page: 263
  year: 2016
  ident: 10.1016/j.cma.2018.03.024_b20
  article-title: Heat transfer simulation using GPUs
– year: 2010
  ident: 10.1016/j.cma.2018.03.024_b28
– ident: 10.1016/j.cma.2018.03.024_b17
  doi: 10.1109/ICNN.1995.488968
– volume: 68
  start-page: 663
  issue: 5
  year: 2008
  ident: 10.1016/j.cma.2018.03.024_b8
  article-title: Fault tolerant algorithms for heat transfer problems
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2007.09.004
– ident: 10.1016/j.cma.2018.03.024_b33
– volume: 39
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.cma.2018.03.024_b10
  article-title: Multi-level parallelism for incompressible flow computations on GPU clusters
  publication-title: Parallel Comput.
  doi: 10.1016/j.parco.2012.10.002
– volume: 183
  start-page: 2376
  issue: 11
  year: 2012
  ident: 10.1016/j.cma.2018.03.024_b13
  article-title: Optimizations of a GPU accelerated heat conduction equation by a programming of CUDA Fortran from an analysis of a PTX file
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2012.06.005
– volume: 109
  start-page: 476
  issue: 3
  year: 2008
  ident: 10.1016/j.cma.2018.03.024_b18
  article-title: Application of multi-phase particle swarm optimization technique to inverse radiation problem
  publication-title: J. Quant. Spectrosc. Radiat. Transfer
  doi: 10.1016/j.jqsrt.2007.07.013
– year: 2014
  ident: 10.1016/j.cma.2018.03.024_b27
– volume: 73
  start-page: 4
  issue: 1
  year: 2013
  ident: 10.1016/j.cma.2018.03.024_b24
  article-title: Graphics processing unit (GPU) programming strategies and trends in GPU computing
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2012.04.003
– year: 1985
  ident: 10.1016/j.cma.2018.03.024_b3
– volume: 103
  start-page: 285
  year: 2016
  ident: 10.1016/j.cma.2018.03.024_b6
  article-title: A novel numerical method for solving heat conduction problems
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.06.103
– year: 2013
  ident: 10.1016/j.cma.2018.03.024_b31
SSID ssj0000812
Score 2.328405
Snippet In this paper, we present a novel parallel algorithm implemented on graphics accelerators to solve the two-dimensional inverse heat conduction problem...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 286
SubjectTerms Algorithms
Conduction heating
Conductive heat transfer
Data parallel algorithm
Divergence
Genetic algorithm
Genetic algorithms
Graphics accelerators
Graphics processing units
Heat conductivity
Heat transfer coefficients
Heuristic
Heuristic methods
Inverse heat conduction problem
Inverse problems
Launching
Mathematical analysis
Particle accelerators
Particle Swarm Optimisation
Warp
Title Using multiple graphics accelerators to solve the two-dimensional inverse heat conduction problem
URI https://dx.doi.org/10.1016/j.cma.2018.03.024
https://www.proquest.com/docview/2071302701
Volume 336
WOSCitedRecordID wos000432752200012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1dT9swFLU62MP2sA-2aQw2-WFPQ56S2IntR4RAME1oEkzqW-TYjgQqKaJZQfyI_eZdf6VdEWibtJe2SZvU8j25PraPjxH6WAoFKbDhxLSlISxXjDSiLQiFNNlwaxrdenf9r_z4WIzH8tto9DOthZlPeNeJmxt5-V9DDecg2G7p7F-Ee7gpnIDPEHR4hbDD6x8FPogABqGgd6T2VsxaQxPjZ9W9qwOUYm497-yvp8Q4l__g0LFz1jmthnUksneydBMcZnfi5jPLfDZtChF3ovbiWhWJ7YV1q4qTC7RdGB8Oozq3YZq-82_5zAsLTsJBZ6aDbPjAToI58NFFlOrGYYpcDJLWOHZ2Z_1MyMesJMBRwry2DSlYcEmKPHi-pBxN6W9ZNrln-yPqTRLutgVhWOL8s_b-UrnwZrZhwfaKxfaJK4crRu7ynajGj9B6wUsJiX5992h__GXRtos8-M_Hcqd5cq8YXPmj-5jOSpvviczpC_Qs9kDwbkDOSzSy3QZ6HnsjOOb62QZ6umRV-QopDyucYIUTrPAyrHA_xR5WGGCFV2CFI6ywgxVewApHWL1G3w_2T_cOSdyeg2halD1poXPGmMlkQ8uKtQzIIM9tYWQLfQZpstLA4-6G2LUBnm4yBR25wkpZKtpaJRh9g9a6aWffIkxVpa2qJHD1lsHlSiuTcV0ZXVVaZnoTZakqax29690WKpM6iRTPa6j92tV-ndEaan8TfRouuQzGLQ_9mKX41JF5BkZZA5geumw7xbKOGWAG33MvBsjyd_921y30ZPEAbaO1_uqHfY8e63l_Nrv6EBH5C53Dsuc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+multiple+graphics+accelerators+to+solve+the+two-dimensional+inverse+heat+conduction+problem&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Sz%C3%A9n%C3%A1si%2C+S%C3%A1ndor&rft.au=Felde%2C+Imre&rft.date=2018-07-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=336&rft.spage=286&rft.epage=303&rft_id=info:doi/10.1016%2Fj.cma.2018.03.024&rft.externalDocID=S004578251730186X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon